Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Лекции по КМвА.doc
Скачиваний:
209
Добавлен:
21.03.2015
Размер:
4.23 Mб
Скачать

10. Характеристики износа и виды изнашивания

Износостойкость— свойство материала оказывать в определенных условиях трения сопротивление изнашиванию.

Изнашивание— процесс постепенного разрушения поверхностных слоев материала путем отделения его частиц под влиянием сил трения. Результат изнашивания называютизносом. Его определяют по изменению размеров (линейный износ), уменьшению объема или массы (объемный или массовый износ).

В результате изнашивания изме­няются размеры детали, увеличиваются зазоры между трущи­мися поверхностями, вызывающие биение и стук. Все это вызывает отказ машин.

Изнашивание является сложным физико-химическим процес­сом и нередко сопровождается коррозией. Реальные поверх­ности имеют сложный рельеф, характеризующийся шерохова­тостью и волнистостью. При трении существует дискретное каса­ние шероховатых тел и, как следствие этого, возникают отдельные фрикционные связи, определяющие процесс изнашивания. Износ может возникнуть вследствие фрикционной усталости, хрупкого и вязкого разрушения, микрорезания при начальном взаимодей­ствии, разрушения (в том числе усталостного) оксидных пленок, глубинного вырывания металла и т. д.

Износостойкость материала оценивают величиной, обратной скорости vh или интенсивностиJhизнашивания. Скорость и интенсивность изнашивания представляют собой отношение износа соответственно к времени или пути трения.

Интенсивность линейного изнашивания

Чем меньше значение скорости изнашивания при заданном износе Δh, тем выше ресурс работыtузла трения:

Скорость изнашивания и износ зависят от времени.

Интенсивность изнашивания Jhизменяется от 10-3до 10-13. В зависимости от величины интен­сивности изнашивания введено 10 классов износостойкости от 0 до 9.

По виду контактного взаимодействия поверхностей трения классы 0—5 соответствуют упругому деформированию (Jh=10-13- 10-7); классы 6 и 7 — упруго пластическому деформи­рованию (Jh= 10-7- 10-5); классы 8- 9 - микрорезанию (Jh=10-5- 10-3). Так, интенсивность изнашивания гильз цилиндра, поршневых колец, шатунных и коренных шеек коленчатых валов составляет 10-11— 10-12, режущего инструмента - 10-5—10-8, зубьев ковшей экскаваторов — 10-3—10-4.

Классы износостойкости позволяют применять расчетные ме­тоды определения срока службы трущейся пары.

Существуют три периода износа (рис. 1).

Обеспечение износостойкости связано с предупреждением катастро­фического износа, уменьшением скоростей начального и установившегося изнашивания. Эта задача решается рациональным выбором материала трущихся пар и способа его обработки. При выборе материала необходимо учитывать, что критерии его износостойкости зависят не только от свойств поверхностного слоя материала, но в сильной степени от условий его работы. Условия работы отличаются таким большим разнообразием, что не существует универсального износостойкого материала. Материал, устойчивый к изнашиванию в одних условиях, может катастрофически быстро разрушаться в других. Износостойкость материала при заданных условиях трения, как правило, определяют экспериментальным путем.

Рис.26. Изменение износа Δh во времени (схема)

I — начальный, или период приработки, когда изнашивание протекает с постоянно замедляющейся скоростью; II — период установившегося (нормального) износа, для которого характерна небольшая и постоянная скорость изнашивания; III - период катастрофического износа.

Работоспособность материалов в условиях трения зависит от трех групп факторов:

1) внутренних, определяемых свойствами материалов;

2) внешних, характеризующих вид трения (скольжение, качение) и режим работы (скорость относительного перемещения, нагрузка, характер ее приложения, температура);

3) рабочей среды и смазочного материала.

Совокупность этих факторов обусловливает различные виды изнашивания (ГОСТ 27674—88) различают следующие виды изнашивания: механическое, коррозионно-механическое и электроэрозионное (изнашивание при действии электрического тока).

К механическомуизнашиванию относят абразивное, гидроаб­разивное, газоабразивное, эрозионное, кавитационное, усталост­ное, изнашивание при фреттинге и изнашивание при заедании.

Абразивноеизнашивание материала происходит в результате режущего или царапающего действия твердых тел и (или) абра­зивных частиц. Эти частицы попадают между контактирующими поверхностями со смазочным материалом или из воздуха, а также могут появиться в результате развития других видов изнашива­ния (схватывания, выкрашивания, окисления). Абразивное изна­шивание может иметь место с преобладанием процессов окисления (окисление и последующее разрушение оксидных пленок) и с преобладанием механического разрушения (внедрения абразивных частиц) и разрушения поверхности. При окислительной форме абразивного изнашивания коэффициент трения 0,05—0,30 и тол­щина разрушающегося слоя до 0,1 мм. Абразивное изнашивание является типичным для многих деталей горных, буровых, строи­тельных, дорожных, сельскохозяйственных и других машин, ра­ботающих в технологических средах, содержащих абразивные частицы (грунт, разбуриваемые породы и т. д.).

Изнашивание, происходящее в результате воздействия час­тиц, увлекаемых потоком жидкости, называют гидроабразивнымизнашиванием. Оно имеет место, например, в мешалках и про­пеллерах реакторов, в колесах и корпусах насосов, в шнеках и т. д.

Если абразивные частицы увлекаются потоком газа (напри­мер, в дымоходах и воздуходувках), то вызываемое ими изнаши­вание называется газоабразивнымизнашиванием.

Под кавитационнымизнашиванием понимают изнашивание по­верхности при относительном движении твердого тела в жидкости. В условиях кавитации работают гребные винты, гидротурбины, детали машин, подвергающиеся принудительному водяному ох­лаждению, трубопроводы.

Усталостноеизнашивание (контактная усталость) происходит в результате накопления повреждений и разрушений поверх­ности под влиянием циклических контактных нагрузок, вызываю­щих появление «ямок» выкрашивания. Усталостное изнашивание проявляется при трении, качении или реже качении с проскаль­зыванием, когда контакт деталей является сосредоточенным.

Так, контактную усталость можно наблюдать в тяжелонагруженных зубчатых и червячных передачах, подшипниках качения, рельсах и бандажах подвижного состава железнодорожного тран­спорта и т. д.

Изнашивание при фреттинг-коррозиипроисходит в болтовых и заклепочных соединениях, посадочных поверхностях подшип­ников качения, шестерен, муфт и других деталей, находящихся в подвижном контакте. Достаточны для образования фреттинг-коррозии даже весьма малые относительные перемещения с амп­литудой 0,025 мкм.

Причиной изнашивания является непрерывное разрушение защитной оксидной пленки в точках подвижного контакта.

Изнашивание при заедании, при котором имеет место задир, что приводит к катастрофическим видам износа. При этом про­исходит разрушение поверхности, и трущиеся детали выходят из строя.

Электроэрозионноеизнашивание происходит в результате воз­действия разрядов при прохождении электрического тока.

Допустимые виды изнашивания: окислительное и окислитель­ная форма абразивного изнашивания. Недопустимые разрушения при трении: схватывание I и II рода, фреттинг-процесс, резание и царапание (механическая форма абразивного изнашивания), усталость при качении и другие виды повреждения (коррозия, кавитация, эрозия и др.).

Детали, подвергающиеся изнашиванию, подразделяют на две группы: детали, образующие пары трения (подшипники скольжения и качения, зубчатые передачи и т.п.), и детали, изнашивание которых вызывает рабочая среда (жидкость, газ и т.п.).

Характерные виды изнашивания деталей первой группы — абразивное (твердыми частицами, попадающими в зону контакта), адгезионное, окислительное, усталостное, фреттинг-процесс (фреттинг-коррозия). Для деталей второй группы типично абразивное изнашивание (например, истирание почвой), гидро- и газоабразивное (твердыми частицами, перемешиваемыми жидкостью или газом), эрозионное, гидро- и газоэрозионное (потоком жидкости или газа), кавитационное (от гидравлических ударов жидкости).

Различные виды изнашивания по закономерностям протекания весьма разнообразны.

10.1. Закономерности изнашивания деталей, образующих пары трения, и пути уменьшения их износа

Причина изнашивания сопряженных деталей - работа сил трения. Под действием этих сил происходит многократное деформирование участков контактной поверхности, их упрочнение и разупрочнение, выделение теплоты, изменение структуры, развитие процессов усталости, окисления и др.

Сложность процессов, протекающих в зоне контакта, обусловила воз­никновение различных теорий внешнего трения. Наиболее полно силовое взаимодействие твердых тел объясняет молекулярно-механическая (адгезионно-деформационная) теория трения, которая исходит из дискретности контакта трущихся поверхностей. Из-за шероховатостей соприкосновение поверхностей возникает в отдельных пятнах касания, образующихся от взаимного внедрения микронеровностей или их пластического смятия. Взаимодействие скользящих поверхностей в этих пятнах согласно теории имеет двойственную природу — деформационную и адгезионную. Деформационное взаимодействие обусловлено многократным деформированием микрообъемов поверхностного слоя внедрившимися неровностями. Сопротивление этому деформированию называют деформационной составляющей силы трения FД. Адгезионное взаимодействие связано с образованием на участках контакта адгезионных мостиков сварки Сопротивление срезу этих мостиков и формирование новых определяет адгезионную составляющую силы тренияFАДТаким образом, сила трения так же, как и другая важная фрикционная характеристика — коэффициент тренияf, по определению равный отношению силы трения к нормальной нагрузкеN: f = F/N, определяются как сумма двух составляющих:

Деформационная составляющая трения растет пропорционально от­носительному внедрению неровностей h/R(h— глубина внедрения,R- радиус внедрившейся неровности). Отношениеh/Rи соответственноFДиfДи растут с увеличением шероховатости поверхности, нагрузки и снижаются с повышением твердости и модуля упругости материала. Различают три вида механического взаимодействия (рис. 27,а-в):

1) упругое контактирование;

2) пластическое деформирование;

3) микрорезание.

Рис. 27. Виды взаимодействия поверхностей тре­ния:

а - упругое контактирование; б- пластическое деформирова­ние; в - микрорезание; г - схватывание и разрушение поверх­ностны;» пленок; д - схватывание и глубинное вырывание

Интенсивность износа минимальна при упругом контактировании. При пластическом деформировании она увеличивается на несколько порядков. Это обусловлено тем, что участки поверхности под влиянием пластической деформации интенсивно упрочняются и по исчерпании запаса пластичности хрупко разрушаются. Этому же способствует и усиление адгезионного взаимодействия. Микрорезание относится к недопустимым механизмам изнашивания, так как вызывает интенсивное разрушение поверхностного слоя. Микрорезание возможно не только внедрившимися неровностями, но и посторонними твердыми частицами. Такой вид разрушения поверхности называют абразивным изнашиванием.

Адгезионная составляющая трения пропорциональна безразмерному параметру τ0/НВ(τ0— прочность на срез адгезионной связи). Возможны два вида адгезионного взаимодействия (рис. 27,г,д):

1) схватывание и разрушение поверхностных пленок;

2) схватывание металлических поверхностей, сопровождающееся заеданием, т.е. глубинным вырыванием.

При первом виде взаимодействия срез адгезионных связей происходит по оксидным или адсорбированным пленкам, которыми всегда покрыты трущиеся поверхности. Скорость образования оксидных пленок обычно высока, чему способствуют высокие температуры, развивающиеся на поверхностях трения. Разрушение поверхности путем среза оксидных пленок называется окислительным изнашиванием. Это наиболее благоприятный вид изнашивания, при котором процессы разрушения локализуются в тончайших поверхностных слоях.

Схватывание металлических поверхностей возникает между чистыми от пленок (ювенильными) поверхностями трения, например, в условиях вакуума или при разрушении пленок пластической деформацией в местах контакта. В зависимости от условий трения, при которых пластическая деформация разрушает оксидные пленки, различают две разновидности схватывания: холодное (I рода) и тепловое (II рода). Различают схватывание 1 рода (холодный задир) и II рода (горячий задир). Холодный задир происходит при трении с не­большими скоростями относительного перемещения (до 0,5— 0,6 м/с) и удельными нагрузками, превышающими σTпри от­сутствии смазочного материала и защитной пленки оксидов. Го­рячий задир, наоборот, имеет место при трении скольжения с большими скоростями (>0,6 м/с) и нагрузками, когда в зоне контакта температура резко повышается (до 500—1500 °С). При схватывании I рода коэффициент трения 0,5—4,0 и толщина раз­рушающегося слоя до 3—4 мм, а при схватывании II рода соот­ветственно 0,10—1,0 и до 1,0 мм.

Разрушение поверхностей трения при схватывании (заедании) называют адгезионнымизнашиванием. Это наиболее опасный и быстротечный вид изнашивания, который служит главной причиной отказа в работе многих узлов трения.

Молекулярно-механическая теория трения определяет два основных пути повышения износостойкости материала:

1) увеличение твердости трущейся поверхности;

2) снижение прочности адгезионной связи.

Повышение твердости направлено на то, чтобы затруднить пластическую деформацию и исключить микрорезание поверхностей трения, обеспечив по возможности упругое деформирование участков контакта.

Снижение прочности адгезионной связи необходимо для предупреждения схватывания металлических поверхностей. Наиболее эффективно эта цель достигается разделением поверхностей трения жидким, твердым (иногда газовым) смазочным материалом. При использовании жидкостной смазки, когда поверхности деталей разделены несущим гидродинамическим слоем, коэффициент трения минимален (0,005 - 0,01), а износ практически отсутствует.

Твердая смазка обеспечивает более высокий коэффициент трения (0,02 -0,15). Она незаменима для узлов трения, способных работать в вакууме, при высоких температурах и других экстремальных условиях. Из твердых смазочных материалов наиболее широко применяют графит, дисульфид молибдена MoS2, имеющие слоистое строение.

Использование смазочных материалов, однако, не гарантирует от схватывания. Твердые смазочные материалы постепенно изнашиваются. Условия жидкостной смазки нарушаются из-за неблагоприятных режимов работы механизмов (периоды приработки, а также пуска и остановок машин). В этих случаях возникает граничное трение, при котором поверхности разделяются лишь тонкой масляной пленкой. Контактные напряжения и нагрев способны разрушать эту пленку и вызывать схватывание.

Рис. 28. Влияние нагрузки Р на интенсивность изнашивания Jh различных материалов (контакт из одноименных материалов) :