Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Курс лекций по биомеханике.doc
Скачиваний:
2496
Добавлен:
21.03.2015
Размер:
6.22 Mб
Скачать

5.3. Полет

Фаза полета длится с момента отрыва от опоры толчковой ноги до момента приземления (касания опоры).

Спортсмен своими движениями может изменить и вызвать в р а щ е н и я вокруг осей, проходя­щих через ОЦТ. В полете могут, например, решаться такие задачи:

увеличить и уменьшить скорость вращения тела или вызвать враще­ние в новом направлении (напри­мер, прыжки гимнастические, в том числе опорные, в воду, на коньках); перенести поочередно части тела через препятствие (прыж­ки в высоту); поднять звенья тела для более позднего приземления (прыжки в длину и тройной) и другие. Способы подготовки к последующим действиям и сами действия в полете очень разнообразны. Все движения в полете носят характер встречных движений и траек­тории ОЦТ не изменяют.

5.4. Амортизация

Полет заканчивается моментом приземления, после которого возникает амортизация — взаимодействие с опорой (или водной средой при прыжках в воду).

Опора или вода затормаживают движущееся тело спортсмена; при отрицательном ускорении возникают силы инерции тела спортсмена, направленные по ходу движения. Силы инерции вышерасположенных частей тела действуют на нижерасположенные. Навстречу на тело дейст­вуют равные им динамические опорные реакции. Следует еще не забы­вать также о силах тяжести и равных им статических реакциях опоры.

В результате действия сил с двух сторон происходит деформация тела спортсмена. При этом также деформируются (растягиваются)

мышцы; своей уступающей работой они замедляют движение тела вниз. Происходит замедление и остановка движения ОЦТ.

Амортизационная перегрузка зависит от величины кинетической энергии приземляющегося человека и длины пути амортизации. Отдале­ние ОЦТ от опоры к моменту приземления удлиняет путь амортизации и уменьшает перегрузку.

Если после приземления и амортизации последует вновь оттталкивание, то амортизацию выполняют более жестко, на коротком пути. Мышцы-амортизаторы напрягаются больше; закончив амортизацию, они сильнее напряжены и начинают преодолевающие движения с более высоким эффектом (тройной прыжок, акробатические прыжки).

6.Биомеханика различных видов спорта

Плавание

При плавании все части тела вовлекаются в движение. Пла­вание основано на взаимодействии пловца с водой, при котором создаются силы, продвигающие его в воде и удерживающие на ее поверхности.

Биомеханика плавания связана с тем, что силы, тормозящие продвижение, значительны, переменны и действуют непрерывно, «Опора» на воду создается во время гребковых движений и оста­ется переменной по величине.

Спортивное плавание включает четыре вида: вольный стиль (кроль), плавание на спине, брасс, баттерфляй.

Вольный стиль. Продвижение вперед происходит постоянно за счет смены работы рук и ног. Руки действуют под водой для продвижения вперед, а противоположное движение — вынос рук вперед — происходит над водой. Движение кисти под водой происходит без сильного отклонения в сторону при слегка согнутой руке. Оно заканчивается, когда рука выходит из воды у бедер. Затем без остановки рука переносится вперед и снова включается в эффективную работу перед плечом. Движения ног — вверх-вниз представляет собой малый тормозящий момент. Движение начинается от таза и продолжается через бедро, ко­ленный сустав, голень, голеностопный сустав вплоть до пальцев ног. При ударе вниз стопа поворачивается внутрь для повышения Эффективности отталкивания.

Плавание на спине. Тело выпрямлено, плечевой по­яс лежит несколько выше таза, голова слегка подтянута к груди.

Движения рук. К началу подводного движения, продви­гающего тело пловца вперед, руки находятся на поверхности воды в выпрямленном положении над плечом. Кисть — в положении отталкивания. Руки начинают подтягивать, при этом они слегка согнуты в локтевом суставе. В конце движения под водой руки опять почти выпрямлены. Во время всей работы в воде кисть про­водится на глубине 20—30 см. Рука переносится над водой и, опус­каясь в нее, начинает новую рабочую фазу. Ритм смены рук здесь отличается от кроля. В то время как одна рука совершает движе­ние под водой, другая производит маховое движение над водой и затем погружается в воду.

Движения ног. Ноги совершают поочередно удары вверх и вниз. Здесь стопа по мере надобности разворачивается внутрь во время удара вверх с тем, чтобы повысить действенность оттал­кивания. Амплитуда движения составляет 30—50 см.

Брасс. Брасс — самый медленный стиль из четы­рех спортивных способов плавания. Это объясняется прежде всего тормозящими моментами, возникающими при вынесении рук впе­ред, а также слабо выраженным подводным движением.

Движения рук. Из вытянутого положения руки симмет­рично разводятся в стороны и несколько вниз; при этом внутрен­ние поверхности кистей, развернутые во внешнюю сторону и слегка закругленные, действуют как весла. Примерно на уровне плеч руки делают легкий мощный толчок внутрь, подводятся близко к груди и широко разводятся вперед.

Движения ног. Из вытянутого положения голени одновре­менно и симметрично подводятся к тазу, при этом колени и пятки несколько разведены, ступни развернуты наружу и подтянуты к большой берцовой кости. Из этого положения, при котором пятки находятся на расстоянии 30—40 см от таза, производится широ­кий толчок разведенными ногами в стороны. При этом особенно сильно отталкиваются голенями и подошвами ступни. В затухаю­щей фазе движения ноги опять сводят вместе и выпрямляют.

Баттерфляй. Плавание баттерфляем выполняет­ся с помощью порхающих над водой рук одновременно с движе­ниями ног и корпуса, которые напоминают движения хвостовых плавников дельфина. К началу подводного движения обе руки на­ходятся впереди плеч; они подводятся под туловище одновременно. После того, как кисти обеих рук выносятся из воды в сторону от бедер, руки как можно более напряженно вновь выводятся вперед до очередного погружения.

Движение ног начинается в поясничной части. Для уве­личения силы отталкивания при ударе вниз стопы повернуты внутрь, а при ударе вверх опять становятся продолжением голени.

Плавучесть точно так же как сила, обусловленная весом тела, приложена к его центру тяжести (ЦТ), подъемная сила, обуслов­ленная весом вытесненной им жидкости, приложена к точке, на­зываемой центром плавучести.

При движении в жидкости твердого тела (например, шара) бли­жайший слой жидкости прилипает к нему и движется вместе с ним; остальные слои скользят друг относительно друга. Сила, действующая на твердое тело, движущееся внутри вязкой среды (жидкость), и на­правленная противоположно скорости тела, называется сопро­тивлением среды.

Лобовое сопротивление. При движении какого-нибудь тела в жидкости, на него действует сила, задерживающая его движе­ние. Эту силу называют лобовым сопротивлением. Величина ее зависит от природы жидкости и от размеров, формы и скорости движущегося тела.

Как показали эксперименты в аэродинамических трубах, лобо­вое сопротивление тела или различных тел одной и той же формы можно определить по формуле Д = —рvАСд, где Д — лобовое сопротивление, р — плотность жидкости, v — скорость движения жидкости относительно тела, А — характеристическая площадь и Сд — величина, называемая коэффициентом лобового сопротив­ления, которая зависит от формы тела и от числа Рейнольдса.

К сожалению, не существует единого определения А, которое было бы удобным при любой форме тела. Используются следую­щие площади:

1) лобовая площадь, т. е. площадь проекции тела на плоскость, перпендикулярно направлению потока. В случае цилиндра, имею­щего высоту h и радиус г, лобовая площадь будет равна яг2, если ось цилиндра параллельна потоку, и 2rh, если она перпендикуляр­на ему;

2) площадь наибольшей проекции, т. е. проекции по тому направ­лению, по которому площадь ее будет наибольшей; эту величину используют, когда имеют дело с обтеканием профиля крыла; по сравнению с лобовой площадью она имеет то преимущество, что не изменяется при наклоне профиля;

3) суммарная поверхность тела. Следует помнить, что в случае тонкой пластинки это будет суммарная площадь обеих ее сторон.

Если есть сомнения, то важно указать, какая именно из этих площадей была использована при вычислении коэффициента Сд.

Лобовое сопротивление — не единственная гидродинамическая сила, действующая на тела, которые движутся в жидкости или нахо­дятся в потоке. По определению оно имеет то же направление, что и скорость движения жидкости относительно тела. Когда симметрич­ное тело движется вдоль своей оси симметрии, действующая на него гидродинамическая сила направлена прямо и представляет собой ло­бовое сопротивление. Но когда симметричное тело движется под не­которым углом к оси симметрии, гидродинамическая сила действует под углом к его пути. Ее можно разложить на две составляющие, одна из которых направлена назад и представляет собой лобовое сопро­тивление, а другая действует под прямым углом к первой.

Энергетика пловца. Когда человек плывет, он сообщает некото­рое количество энергии воде, чтобы продвинуться (проплыть) в ней. Это создает волну, которая в конечном счете потеряет всю сообщен­ную ей энергию в виде тепла, и поверхность воды снова станет спокой­ной. Затраченная таким образом при плавании энергия представляет собой совершенную работу плюс тепло, потерянное телом пловца.

Лыжный спорт

На лыжных гонках происходит сочетание свободного скольжения, отталкивания лыжами и палками от снега, маховых движений рук и ног и броска (перемещения) тела вперед-вверх.

Свободное скольжение (фаза I) происходит при тормозящем воздействии трения лыжи по снегу и незначительном сопротивле­нии воздуха. Чтобы меньше терять скорость, нельзя делать резких движений (рукой или ногой) направленных вверх-вперед. Свобод­ное скольжение заканчивается постановкой палки на снег.

Начинается фаза скольжения с выпрямлением опорной ноги, (фаза II). Увеличивая наклон туловища и нажим на палку лыжник стремится увеличить (повысить) скорость скольжения лыжи.

Подседание начинается еще (уже) при скольжении лыжи (фа­за III), которая при энергичном разгибании опорной ноги в колен­ном и тазобедренном суставах быстро теряет (гасит) скорость и останавливается. Подседание, начатое в фазе III, продолжается и завершается в фазе IV, сопровождаемое выпадом — движением переносной ноги вперед. С окончанием подседания начинается вы­прямление толчковой ноги в коленном суставе (фаза V), сопро­вождаемое завершающимся выпадом.

Следует отметить, что с повышением скорости передвижения изменяется ритм скользящего шага (сокращается время отталки­вания лыжей. Подседание и выпрямление толчковой ноги делаются быстрее).

Основой лыжной техники является попеременный шаг с поста­новкой палок при каждом шаге. Он соответствует нормальному бегу, который с помощью лыж переходит в ритмичное скольжение. Толчок к скольжению дается мощным отталкиванием соответствующей но­ги от снежного основания и толчок палками. Отталкивание всегда начинается тогда, когда обе ноги находятся приблизительно рядом. Однако эффективным оно бывает, если лыжа в этот момент имеет достаточное трение со снежным основанием благодаря правильной смазке. В то время как левая нога отталкивается, правая становится скользящей. При этом масса тела переходит с отталкивающейся но­ги на скользящую. Лыжник-гонщик скользит преимущественно на одной лыже. Только во время короткого промежутка отталкивания ногой обе лыжи одновременно касаются снега.

Прыжки в воду

Прыжки в воду относятся к технико-композиционным видам спорта и включают в себя прыжки с трамплина и с вышки. Прыжки выпол­няются из передней или задней стойки, с вра­щательными движениями, винтами, прыжки из стойки на кистях и т. д. (рис. 15.41).

Главным элементом техники прыжка с трамплина и вышки является разбег, толчок, фаза полета и вход в воду.

Выполнение всего прыжка зависит от толчка. При этом направлением толчка определяется по­следующая траектория полета, которую спорт­смен не сможет изменить в ходе фазы полета. Фаза полета начинается в момент отрыва ног от доски или от площадки и заканчивается касани­ем поверхности воды. Фаза полета вводится толчком, который определяет оптимальную тра­екторию полета и выполнение движений. Основ­ным требованием к входу в воду является вер­тикальное положение погружаемой части тела по отношению к поверхности воды для того, что­бы войти в воду почти без брызг.

Тяжелая атлетика

Тяжелая атлетика — вид спорта, требующий высокой точности воспроизведения упражнения как системы движений. Состязания по подъему (поднятию) тяжестей (штанги) — относятся к таким видам спорта, в которых решающую роль играют в одинаковой мере физичес­кая сила и техника.

Упражнения для развития силы довольно разнообразны, их мож­но выполнять при помощи штанги, гирь, гантелей, тяговых снаря­дов (тренажеров) и т. д. Эти упражнения хорошо зарекомендовали себя во многих видах спорта и служат спортсменам для развития силы и выносливости (скоростно-силовых качеств). Упражнения с большими тяжестями применяются в основном для развития мак­симальной силы, а при помощи упражнений в высоком темпе раз­вивается скоростная сила, т. е. скоростно-силовые качества.

Целью штангиста является подъем штанги при одновременном со­хранении равновесия тела на маленькой площади опоры в период дви­жений, связанных с подъемом. При этом движения различаются от фазы подъема к опорной фазе. На определенное время требуется отно­сительно небольшая сила для воздействия на штангу, для того чтобы совершить необходимые изменения в устойчивости ног при удержа­нии штанги. Сила применяется в вертикальном направлении, но, по­скольку штанга описывает кривую в виде буквы S на уровне корпуса тела, в действие могут вступить также и горизонтальные силы. Уско­рение штанги зависит от величины силы, которая воздействует на нее, а также от массы снаряда. Чем меньше масса снаряда, тем боль­ше скорость при равном применении силы и наоборот. Достигнутая максимальная скорость является решающей для так называемой тя­говой высоты штанги.

Силы, воздействующие на систему «штанга — корпус», должны использоваться в основном периоде тяговой фазы только для необхо­димых перегруппировок частей корпуса тела от фазы подъема до под­рыва. Воздействие мышечной силы на штангу обусловливает эла­стичную деформацию штанги. Возникают так называемые эластичные силы в снаряде. Они способствуют ускорению штанги и надежному перемещению ее. Штангист должен для использования эластичного действия штанги выработать определенное чувство ритма в период тренировок.

При перемещении штанги спортсмен достигает и преодолевает разные силы: а) вес штанги (сила тяжести); б) сила инерции штан­ги, которая зависит от массы и от скорости штанги; в) сила тяже­сти и сила инерции собственного тела.

Эти факторы являются решающими критериями для оценки тех­ники и силы спортсмена. Освоение техники упражнений способ­ствует выработке правильной осанки.

Координация движений тяжелоатлета затрудняется в резуль­тате некоторых факторов:

1. Трудности при подъеме штанги предельного веса — это ком­плексный фактор: а) атлет все время вынужден менять вес подни­маемой штанги, что заставляет изменять координацию мышечных напряжений; б) атлет не имеет возможности многократно повто­рять рывок и толчок с соревновательными вариантами веса штан­ги в связи с предельным характером нагрузки.

2. Значительные сдвиги в силовой подготовленности тяжело­атлетов в процессе тренировки заставляют соответственно менять технику подъема штанги в связи с большими изменениями внут­ренних сил в системе «атлет — штанга».

3. Кратковременность всего упражнения или отдельных его час­тей ограничивает возможность текущих коррекций движений на основе функционирования обратной связи.

Для развития (тренировки) силы тех или иных мышц важным яв­ляется исходное положение спортсмена.

При одной и той же силе действия в разных позах их величины сил и силовых моментов, действующих в отдельных суставах, могут быть различными. При неправильно выбранной по­зе момент силы, действующей на позвоночник и суставы может быть критическим и вызвать травму, а если упражнения со штангой выполняются длительно, с большим ко­личеством повторений, то возникают заболевания опорно-двига­тельного аппарата (ОДА). При правильной технике выполнения упражнения этого не происходит.

Энергетика локомоций

Энергетический обмен осуществляется в результате преобразо­вания питательных веществ в энергию. Энергия используется для обеспечения функции мышц. Интенсивность энергопродукции орга­низма в целом зависит от количества выделенной энергии (внешняя работа, тепло) и от количества запасенной энергии (депонирование питательных веществ, структурные преобразования) в единицу вре­мени: общее количество выработанной энергии — это сумма внеш­ней работы, тепловых потерь и запасенной энергии.

Механическая энергия передвижения человека обусловлена мощностью его мускулатуры и мощностью внешних факторов.

Работа, развиваемая мышцами в определенный отрезок време­ни, соответствует изменению механической энергии тела, кото­рая, в свою очередь, состоит из двух компонент: кинетической и потенциальной энергии тела. Кинетическую и потенциальную энергию при расчете определяют приблизительно по кинематике тела или по движению общего центра тяжести (ОЦТ) тела.

Потенциальная энергия во время ходьбы меняется. Так, во вре­мя двойной опоры она минимальна и максимальна в момент вер­тикали (т. е. отталкивания от земли). Выявлено, что ко времени

Таблица 15.7