Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Физика _ II курс, I семестр.docx
Скачиваний:
91
Добавлен:
21.03.2015
Размер:
233.2 Кб
Скачать

14. Энергия Ферми. Поверхность Ферми. Заполнение энергетических зон: металлы, диэлектрики, полупроводники.

Энергия Фе́рми (EF) системы невзаимодействующих фермионов — это увеличение энергии основного состояния системы при добавлении одной частицы. Это эквивалентно химическому потенциалу системы в ее основном состоянии при абсолютном нуле температур. Энергия Ферми может также интерпретироваться как максимальная энергия фермиона в основном состоянии при абсолютном нуле температур. Энергия Ферми — одно из центральных понятий физики твёрдого тела. Физический смысл уровня Ферми: вероятность попадания частицы на уровень Ферми составляет 0,5 при любых температурах. Фермио́н (от фамилии физика Энрико Ферми) — по современным научным представлениям: элементарные частицы, из которых складывается вещество. К фермионам относят кварки, электрон, мюон, тау-лептон, нейтрино[1]. В физике, частица (или квазичастица) с полуцелым значением спина. Фермионы подчиняются статистике Ферми — Дирака: в одном квантовом состоянии может находиться не более одной частицы (принцип Паули). Волновая функция системы одинаковых фермионов антисимметрична относительно перестановки двух любых фермионов. Квантовая система, состоящая из нечётного числа фермионов, сама является фермионом (например, ядро с нечётным массовым числом A; атом или ион с нечётной суммой A и числа электронов)

Примеры фермионов: кварки (они формируют протоны и нейтроны, которые также являются фермионами), лептоны (электроны, мюоны, нейтрино), дырки (квазичастицы в полупроводнике). Принцип запрета Паули ответственен за стабильность электронных оболочек атомов, делая возможным существование сложных химических элементов. Он также позволяет существовать вырожденной материи под действием высоких давлений (нейтронные звёзды).Поверхность Ферми — поверхность постоянной энергии в k-пространстве, равной энергии Ферми в металлах или вырожденных полупроводниках. Знание формы поверхности Ферми играет важную роль во всей физике металлов и вырожденных полупроводников, так как благодаря вырожденности электронного газа транспортные свойства его, такие как проводимость, магнетосопротивление зависят только от электронов вблизи поверхности Ферми. Поверхность Ферми разделяет заполненные состояния от пустых при абсолютном нуле температур. Рис. 1. Заполнение энергетических зон при абсолютном нуле температуры: а — в диэлектриках; б — в металлах; разрешенные зоны заштрихованы, заполненные зоны или их части заштрихованы дважды. Рис. 2. Заполнение энергетических зон в полупроводнике; показаны только валентная зона и зона проводимости; чёрные кружочки — электроны в зоне проводимости, белые — дырки в валентной зоне.

15. Собственный полупроводник или полупроводник i-типа (англ. intrinsic — собственный) — это чистый полупроводник, содержание посторонних примесей в котором не превышает 10−8 … 10−9%. Концентрация дырок в нём всегда равна концентрации свободных электронов. Примеры: Si, Ge Полупроводник без примесей называют собственным полупроводником или полупроводником i-типа. Он обладает собственной электропроводностью, которая складывается из электронной и дырочной. Если к полупроводнику не приложено напряжение, то электроны и дырки проводимости совершают хаотическое движение и никакого тока, разумеется, нет. Под действием разности потенциалов в полупроводнике возникает электрическое поле, которое ускоряет электроны и дырки и сообщает им еще некоторое поступательное движение, представляющее собой ток проводимости. Движение носителей заряда под действием электрического поля иначе называется дрейфом носителей, а ток проводимости — током дрейфа iдр. Полный ток проводимости складывается из электронного и дырочного токов: iдр= inдр+ ipдр Индексы n и p соответственно обозначают электронный и дырочный вклады. Удельная проводимость зависит от концентрации носителей и от их подвижности. В полупроводниках при повышении температуры вследствие интенсивной генерации пар носителей концентрация подвижных носителей увеличивается значительно быстрее, нежели уменьшается их подвижность, поэтому с повышением температуры проводимость растет. Для изготовления полупроводников применяют в основном германий и кремний, а также некоторые соединения галлия, индия и пр. Для полупроводников характерен отрицательный температурный коэффициент электрического сопротивления. При возрастании температуры сопротивление полупроводников уменьшается, а не увеличивается, как у большинства твердых проводников. Кроме того электрическое сопротивление полупроводников очень сильно зависит от количества примесей (и от типа примесей тоже), а также таких внешних воздействий, как свет, электрическое поле, ионизирующее излучение и т. д. (на этом основан принцип действия фотодиодов, фототранзисторов, магнитоуправляемых приборов и т. п.) Принцип работы полупроводниковых приборов связан с тем, что в полупроводниках существует электропроводность двух типов — электронная и дырочная. Электронная электропроводность характерна для металлов и обусловлена перемещением электронов проводимости. При обычных рабочих температурах в полупроводниках всегда имеются электроны проводимости, которые очень слабо связаны с ядрами атомов и совершают беспорядочное тепловое движение (колебания) между атомами кристаллической решетки. Эти электроны под действием разности потенциалов могут начать двигаться в определенном направлении. Это движение и есть электрический ток. Полупроводники обладают также дырочной электропроводностью, которая редко наблюдается в металлах. Электроны и дырки, которые могут перемещаться, а потому создавать электропроводность, называются подвижными носителями заряда или просто носителями заряда. Весь этот процесс принято называть генерация пар носителей заряда, то есть возникают пары электрон проводимости-дырка проводимости. Вследствие того, что электроны и дырки совершают хаотическое движение, обязательно происходит и процесс, обратный генерации пар носителей. Электроны проводимости снова занимают свободные места в валентной зоне (падающий сверху кружочек на рисунке), то есть объединяются с дырками. Такое исчезновение пар носителей называется рекомбинацией носителей заряда. Процессы генерации и рекомбинации всегда происходят одновременно. Рекомбинация ограничивает возрастание пар носителей, и при каждой данной температуре устанавливается определенное число электронов и дырок проводимости, то есть они находятся в состоянии динамического равновесия.Так же следует отметить, что проводимость чистых полупроводников, значительно ниже примесных. Это связанно с тем, что свободных носителей заряда в примесных значительно больше.

16. Примесные полупроводники Примесный полупроводник - это полупроводник, элек­т­ро­­­фи­зи­­чес­кие свойства которого определяются, в основном, при­ме­ся­­ми дру­гих химических элементов.  Процесс вве­дения примесей в по­­лу­­про­водник называется леги­ро­ва­нием полупроводника, а са­ми при­­­­меси называют леги­ру­ю­щи­ми. Для равномерного распре­де­­ле­­ния легирующей примеси в объ­еме полупроводника ле­ги­ро­ва­­ние осу­­щест­в­ля­ет­ся в процессе вы­ращивания монокристалла по­лу­­про­вод­ника из жидкой или га­зо­образной фазы. Локальное ле­ги­­ро­ва­ние части объема полу­про­водника­, например, при­по­ве­р­х­ностной об­­ла­сти, производится методом диффузии при силь­ном нагреве полупроводника или низкотемпературными методами ион­ного ле­ги­ро­вания. Роль примесей могут играть и всевозможные дефекты стру­к­ту­ры кри­­сталлической решетки полупроводника, такие как вакан­сии,  ме­ж­ду­узельные атомы, дислокации. При малой концентрации примесей (1021...1023 м-3) примесные атомы со­­з­­дают  дополнительные дискретные энергетические уровни в за­­п­ре­щенной зоне полупроводника. Такой полупроводник на­зы­ва­ется не­вы­рожденным. Повышение концентрации примесных ато­­мов в полупроводнике до 1024...1025 м-3 сопровождается поя­в­ле­нием в за­пре­щенной зоне по­лу­про­водника вместо дискретных уров­ней зон при­­мес­ных уров­ней. Такие полупроводники на­зы­ва­ют вы­рож­ден­ными. Различают два основных вида примесей, которые ис­поль­зую­т­­ся для преднамеренного легирования полупроводников и соз­да­ю­­щих преимущественно электронный или дырочный тип про­во­ди­­мо­сти. Примеси, введение которых в полупроводник соз­да­­ет  эле­к­т­ронный тип проводимости, называются донорными. При­­месь, соз­да­ющая дырочную про­води­мость, называется акцеп­тор­ной. Если к полупроводнику n-типа приложить электрическое поле, то каждый отрицательный носитель приобретет в этом поле ускорение, набирая скорость до тех пор, пока не рассеется на одном из донорных узлов. Это означает, что носители, которые обычно движутся случайным образом, имея при этом тепловую энергию, начнут в среднем повышать свою скорость дрейфа вдоль линий электрического поля, вызвав ток через кристалл. Скорость дрейфа, как правило, по сравнению с типичными тепловыми скоростями очень мала, так что можно, прикидывая величину тока, принять, что от столкновения к столкновению среднее время странствий носителя постоянно. Допустим, что эффективный электрический заряд отрицательного носителя равен qn. Сила, действующая на носитель в электрическом поле E, будет равна qnE. В гл. 43, §3 (вып. 4) мы как раз подсчитывали среднюю скорость дрейфа в таких условиях и нашли, что она равна Fτ/m, где F — сила, действующая на заряд; т — среднее время свободного пробега между столкновениями, а т — масса. Вместо нее надо поставить эффективную массу, которую мы подсчитывали в предыдущей главе, но поскольку нас интересует только грубый расчет, то предположим, что эта эффективная масса во всех направлениях одинакова. Мы ее здесь обозначим тn. В этом приближении средняя скорость дрейфа будет равна

Зная скорость дрейфа, можно найти ток. Плотность электрического тока j равна просто числу носителей в единице объема, Nn, умноженному на среднюю скорость дрейфа и на заряд носителей. Поэтому плотность тока равна

Мы видим, что плотность тока пропорциональна электрическому полю; такие полупроводниковые материалы подчиняются закону Ома. Коэффициент пропорциональности между j и E, или проводимость σ, равен

Для материалов n-типа проводимость в общем не зависит от температуры. Во-первых, общее число основных носителей Nn определяется главным образом плотностью доноров в кристалле (пока температура не настолько низка, чтобы позволять атомам захватить чересчур много носителей), а, во-вторых, среднее время от соударения к соударению, τn, регулируется главным образом плотностью атомов примеси, а она, ясное дело, от температуры не зависит.   Те же рассуждения можно приложить к веществу р-типа, переменив только значения параметров, которые появляются в (12.7). Если в одно и то же время имеется сравнимое количество отрицательных и положительных носителей, то вклады носителей обоего рода надо сложить. Полная проводимость определится  из Для очень чистых веществNр и Nn примерно равны. Они будут меньше, чем у материалов с примесями, так что и проводимость будет меньше. Кроме того, они будут резко меняться с температурой (по закону е–Ещели/xТ), так что проводимость с температурой может меняться   чрезвычайно быстро.