- •1.2.1. Основные требования к модели
- •1.2.2. Абстрактная графовая модель. Некоторые понятия теории
- •1.2.3. Графовая модель процесса функционирования объекта
- •X „ Рис. 2.4. Построение граф-модели в пространстве свойств:
- •XI рассматриваются как основные функциональные сврйства
- •Xj. Такое ребро иногда называют дугой.
- •2.4. Переход от пространства свойств
- •2.5. Отображение неисправностей в объекте диагностирования
- •X, f, V, е, r, d рассмотрим процесс построения граф-
- •1 Там, где это необходимо, отдельной дугой могут учитываться и обратные
- •2.6.3. П ро ст ей ше е п ре дс та вл ен иег ра ф-м од ел ью а ви ац ио нн ог о г тд Авиационный газотурбинный двигатель представляет собой
- •6, 7. В результате этого этапа получают граф-модель в пространстве
- •I ямки сц
- •1. Формируется содержательное описание од
- •2. Создается принципиальная схема объекта
- •3. Представляются имеющиеся аналитические и качественные
- •1. Отождествление выбранных
- •2. Представление свойств (функций)
- •2. Строится укрупненная блочная функциональная
- •2. Входные и выходные воздействия функциональных
- •3.3), Можно представить определенным сочетанием элементов
- •2, Т; выходы блоков, являющиеся одновременно внешними
- •3 (Рг) включения наддува, а затем в коллекторы гермоотсека.
- •1. Составить в соответствии с (3.2) матрицу смежности
- •2. Вычислить матрицу
- •1 Это имеет место при решении задач диагностирования с помощью сложившихся
- •1 Импликантой булевой функции ф(*|, дг2, ..., * „) называется элементарная
- •4.3.1. А лг ор ит м п ро ст ог о г ол ос ов ан ия Использование любого из описанных подходов к решению
- •4.3.2. Алгоритм голосования с учетом весов
- •1. Множество в* диагностических параметров формируется
- •2. Если голоса всех вершин внутри рассмотренных трех групп
- •3. Если из-за одинакового числа голосов ряда вершин второй
- •4.3.3. Эвристический алгоритм
- •4.4, А), тупиковые (рис. 4.4,6);
- •4.2. Нумерация вершин граф-модели
- •10. Следующий по порядку за этим q номер должна получить
- •11. После выполнения правил п. 10 для каждой непронумерованной
- •5.1. Определение компонент достижимости
- •XI, соединяющих другие вершины графа с вершиной XI, называют
- •1.4 Будем множество вершин компоненты достижимости
- •Xj назовем число ребер простой ориентированной цепи, содержащей
- •XI и любой другой вершиной соответствуют условию:
- •1.10 Усеченным синдромом d(X{) будем называть множество вершин
- •5.2. Упорядочение вершин граф-модели
- •5.2.1. Оценка параметра по сводному фактору
- •5.2.2. Оценка параметра по фактору чувствительности
- •5.2.3. Оценка параметра по фактору разделительной
- •1 Выделение симптомов s, рассматривается ниже в § 5.6.
- •5.3. Экспертные методы в задаче упорядочения
- •5.3.1. Общие соображения
- •1 Имеется в виду объект упорядочения (а не диагностирования), в качестве
- •100 По усмотрению эксперта.
- •5.3) С обязательным учетом ограничений типа
- •5.3.3. Определение коэффициентов значимости факторов
- •I{Xj/XI) о состоянии параметра X/, получаемого при контроле
- •5.1. Весовая матрица с.,
- •5.2. Матрица частных расстояний Срас
- •1. Если какая-либо строка имеет несколько ненулевых элементов,
- •5.3. Таблица синдромов d (е,)
- •1 С е. Параметры ПараметD(
- •2 С еа 0 0 0 5 8 0 0 0 10 0 0 0 0 0 0 fu /2, г Diet)
- •2. Если к некоторой вершине х ведут несколько маршрутов от
- •3. Вершины ориентированного цикла учитываются только
- •5.4. Таблица усеченных синдромов d(ei)
- •5.5. Декомпозиция рабочей граф-модели
- •5.5.2. Декомпозиция граф-модели
- •5.6. Уточнение граф-модели и упорядочение вершин
- •5.6.1. Уточнение рабочей граф-модели
- •5.7. Таблица близости р
- •1 В табл. 5.6 сведены результирующие вектор-строки. Дальше в таблицах
- •5.7. Выявление эффективного множества диагностических
- •5.7.1. Динамическая перенумерация вершин
- •5.8. Таблица покрытия
- •Xk в состав множества в для получения информации о дефекте
- •5.7.2. Выбор диагностических параметров методом
- •4 И 5. Действия по шагам 3— повторять по порядку для
- •32 Характерных дефектов содержит 11 диагностических
- •5.7.3. Выбор диагностических параметров
- •5.7, 5.8, 5.9) Излагались относительно одной не разделенной
- •1,2,3 GTiyT
- •1. Описанная методика упорядочения вершин граф-модели
- •2. Для решения задачи векториальной оптимизации используется
- •3. Применение правил покрытия таблицы для определения
- •4. На базе выбранного множества диагностических параметров
- •6.1. О рг ан из ац ияд иа гн ос ти че ск оЙинфор м ации Важную роль в организации измерений Значений диагностических
- •6.2. Построение схемы диагностирования
- •6.3. Образование распознаваемых классов
- •6.3.1. М ет одп ос ле до ва те ль ны х д их от ом ийвз ад ач е
- •1 Если они не поименованы иначе.
- •2 От греческого бЫотоцла —разделение надвое.
- •1V точек, которые можно сделать плоскостью, имеющей
- •6.1. Таблица линейных классификаций
- •6.3, А и б). Процедура диагностирования
- •6.3.2. М ет одф ор ми ро ва ни я у сл ов ны х к ла сс ов Другим методом, позволяющим экономить машинные ресурсы
- •§ 6.2, Позволяет определить взаимосвязь между диагностическими
- •1000100...—Класс Рт.
- •6.4.1. О бо сн ов ан иев ыб ор а у сл ов ны х к ла сс ов Мы рассмотрим этот вопрос в соответствии с работой [13],
- •7.1. Интерактивные процедуры в системе функционального
- •7.2. Стадии и этапы обработки
- •1 Этап —определение компонент достижимости p(XI) для
- •2 Этап —определение интервала и границ варьирования значений
- •3 Этап —уточнение (конкретизация) подходящего (допустимого)
- •32 Дефектов.
- •2, 13 Двудольных графов на множествах вершин Хк- в качестве
- •1 Точнее, элементов множества z' (см. Гл. 5 ), так как z' включает в себя
- •Xе или множества неулучшаемых решений (множество Парето).
- •13 Значений ркр, среди которых необходимо найти оптимальное
- •7.4. Стадия формирования эффективного множества
- •4 Элемент для включения его в набор эффективных диагностических
- •7.5. Покрытие таблицы для двухуровневой задачи распознавания
- •7.7), В ряде случаев близкие состояния могут оказаться с помощью
- •7.6. Граф-модель проточной части авиационного двухконтурного
- •Xj. Это соответствует установлению между функциональными
- •§ 4.1 Применительно к авиационному гтд, производилось по
- •2 Например, при наличии технологических заглушек для измерений давления
- •7.1. Таблица близости
- •7.2. Погрешности измерения параметров гтд
- •1 В соответствии с техническими показателями системы измерения параметров
- •7.3. Покрытие диагностическими параметрами возможных состояний проточной части гтд
- •8.1. Алгебраические методы и граф-модели
- •8.2. Допустимые таблицы, различающая мера, вес признака
- •1 Равные строки в каждой отдельной таблице допускаются.
- •8.3. Выявление весов признаков
- •1. Формируется таблица т(1,0):
- •2. Таблица 7'(|,0) с целью сокращения времени машинной
- •3. Определяются тупиковые тесты. Процедура базируется на
- •2. Таблица преобразуется в таблицу т*. Подсчитывается число единиц
- •3. Определяются тупиковые тесты.
- •8.4. Процедуры классификации состояний
- •8.5. Метод декомпозиции в задаче распознавания
- •8.6. Система распознавания и классификация клара
- •8.1. Таблица функциональных назначений модулей
- •1 Уравнение Бернулли для реальной жидкости имеет вид:
- •14 (/З, Нр ). Этими параметрами покрываются все четыре7 дефекта
- •8.3. Таблица покрытия (для параметров работоспособности н)
- •8.4. Таблица покрытия (для диагностических параметров в)
- •1Дьлица I*1,3
- •I аьлина I*
- •ITTsITi I j*‘ 77i
- •1 Признак1числ0т/т18еса
- •I аьЛи на?&г• “
- •6≪ Класс 0
- •03.09.91. Формат 6 0 X 8 8 1 / 16- Бум. Офсетная № 2.
- •15,32. Тираж 800 экз. Заказ № 666. Цена 5 руб.
- •129041, Москва, б. Переяславская, 46.
- •103064, Москва, Басманный туп., 6а,
- •1Mmmmmm
- •Ihak1числ0т/тibeca Ri
- •5|Гап: класс I ≪ dv , класс 0 * d, , d≫ , d2
2.6.3. П ро ст ей ше е п ре дс та вл ен иег ра ф-м од ел ью а ви ац ио нн ог о г тд Авиационный газотурбинный двигатель представляет собой
сложную тепловую машину, содержащую газовоздушный тракт
(проточную часть), вращающиеся механические узлы и вспомогательное
оборудование. В процессе эксплуатации дефекты и нарушения
могут возникать в любой системе двигателя. Представление
такого сложного объекта с помощью граф-модели позволяет
более полно описать взаимодействие его многочисленных узлов и
элементов.
Необходимо отметить, что при создании граф-модели важное
значение имеет концепция, положенная в основу решения задач
диагностирования. Эта концепция должна отражаться в первую
очередь на глубине конкретизации модели. Так, решение задачи
управления эксплуатацией авиационной техники требует диагностирования
объектов до сменного узла —модуля. Поэтому построение
≪тонких≫ и сложных граф-моделей для задач эксплуатации
объекта не имеет смысла, так как их использование вообще
ограниченно из-за сложности получения информации,
определяющей такую модель.
Рассматривая граф-модели авиационных ГТД, его систем, и,
в частности, проточной части на всех этапах их построения и
обработки, мы будем исходить, таким образом, из условия
удовлетворения практических задач, связанных с организацией
эксплуатации по состоянию и соответственно этому с использованием
информации, получение которой в тех или иных условиях
возможно и реально. Это означает, что мы будем везде, где это
возможно, избегать излишней детализации моделей. Отметим,
что такая детализация в принципе имеет наибольший смысл в за-
59
Адаче синтеза систем измерений
(наблюдений) объекта либо в
задаче их усовершенствования,
а сама модель становится основой
для решения этой задачи.
Таким образом, нас будут в
последующем интересовать мо-
Рис. 2.12. Ориентированный граф в дели, обеспечивающие решение
пространстве свойств двигателя задач диагностирования с глубиной
конкретизации до узла,
модуля той или иной системы
объекта, функционального элемента. В дальнейшем мы рассмотрим
достаточно подробную модель проточной части авиационного ’
ГТД, здесь же ограничимся его простейшей моделью, базирующейся
на словесном описании процессов, происходящих в газовоздушном
тракте турбовального ГТД со свободной турбиной.
Для построения модели авиационного ГТД, как и для любого
другого сложного объекта диагностирования, на первом этапе мо-
Рис. 2.13. Функциональная схема авиационного ГТД:
1—компрессор; 2—камера сгорания; 3—турбина компрессора; 4—свободная турбина;
5—выпускное устройство; 6—привод передачи крутящего момента с главным редуктором;
7—привод передачи крутящего момента на агрегаты двигателя; 8—системы
топливопитания и регулирования; 9—системы смазки, охлаждения и суфлирования; 10— системы электропитания и запуска; 11—системы гидропитания, дренажа, противо-
обледенения и пожаротушения; 12—усилитель сигнала регулятора температуры;
х о\—подвод воздуха к компрессору (всасывание); *02—подвод топлива к двигателю; х — производство сжатого воздуха; лгг—передача выработанной энергии турбине; х з— передача энергии свободной турбине; х\—расширение газа на свободной турбине; х$— выброс газа в окружающую среду; х&—передача вращающего момента на компрессор
и на привод передачи агрегатов; х7—передача вращающего момента на привод
главного редуктора; х&—передача вращающего момента на вал несущего винта; Х— передача вращательного движения агрегатам двигателя; х ю—подача дозированного
топлива; Хц—подача масла для смазки и охлаждения узлов двигателя; Х2—питание
систем двигателя электрической энергией; хз—подача топлива для поворота направляющих
аппаратов компрессора; Ха—подача сигнала на отключение пусковой системы; *15— появление командного давления от регулятора на ограничение частоты вращения
ротора компрессора; *16—сигнал перепуска топлива на слив; х\7—командное давление
ограничения приведенных чисел оборотов ротора компрессора от регулятора
60
делирования необходимо выбрать наиболее общие свойства
функционирования, которые затем должны быть связаны в единую
систему. В качестве таких свойств выделим следующие: свойство
сжимать воздух компрессором двигателя ( х \), подавать топливо
в форсунки и образовывать горючую смесь (лгг), вырабатывать
в процессе горения топлива кинетическую энергию газов (*з), распределять
полученную энергию (л:4), выбрасывать отработавшие
газы (хъ).
Ориентированный граф, отображающий отношения выбранных
свойств функционирования, приведен на рис. 2.12. Последующая
его детализация зависит от желаемой конкретизации
целей диагностирования. На рис. 2.13 приведена структурная
функциональная схема двигателя, позволяющая произвести первичную
конкретизацию свойств. Такая конкретизация использовалась
для построения граф-модели двигателя в целом (рис. 2.14)
в пространстве свойств. Полученная модель является первоначальной.
Она играет роль исходной для построения конкретизированных,
первичных моделей, которые получают путем дополне-
Рис. 2.14. Граф-модель авиационного ГТД в пространстве основных свойств.
Дуги граф-модели оцифрованы в соответствии с номерами блоков функциональной
схемы, приведенной на 2.13.
61
ния модели множествами Е —структурных параметров, выделения
множества R количественных характеристик, множества F — параметров функционирования, а также путем дополнения ее элементами,
отображающими возможные неисправности, обусловливаемые
теми или иными дефектами. Если, в частности, в качестве
одного из множеств элементов внести в граф-модель такое,
которое описывает неисправности, обусловливаемые несоответствием
структурных параметров требованиям технических условий,
предъявляемых к двигателю после капитального ремонта,
получим граф-модель для диагностирования двигателя в процессе
его сдаточных испытаний. Отметим, что для диагностирования
объектов в условиях эксплуатационных предприятий или
после ремонта могут иметь важное значение и другие множества
параметров, значения которых определяются множеством характерных
дефектов, связанных либо с износом (условия эксплуатации),
либо с особенностями ремонтного производства.
Список дефектов формируется по данным статистики. Совокупность
элементов такой статистики образует множество дефектов
D={d\, ..., dp), подлежащих распознаванию. Эффективность
системы распознавания повышается при внесении в граф-модель
описаний редко встречаемых дефектов.
Так как внесение в модель дефектов порождает возникновение
сопутствующих параметров, не характерных для нормальных режимов,
в первичную граф-модель должны вводиться также и
сопутствующие параметры —множество V.
Обработка первичной модели, позволяющая выявить представительный
(эффективный) набор диагностических параметров,
должна производиться в соответствии с рядом требований, удовлетворение
которых существенно повышает эффективность дальнейшего
использования граф-модели. Основные из них —полнота
(по охвату диагностируемых дефектов), доступность контроля
(контролепригодность), минимум стоимости контроля при минимальном
времени диагностирования, максимальная разделительная
способность и достоверность. Удовлетворение этим требованиям
связано с необходимостью использования диагностических
параметров, обладающих наибольшей информативностью по отношению
к дефектам. Это определяет важность различного рода
информационных оценок при выборе множества диагностических
параметров.
Отметим также, что максимальная объективизация модели
оказывается возможной для объектов, имеющих формальное
описание, аналогичных описанному в п. 2.6.1.
Ниже будет рассмотрена граф-модель образования тяги в двухконтурном
двухкаскадном ГТД, построенная на базе формального
описания процессов, происходящих в газовоздушном
тракте.
62
Глава3
А ЛГ ОР ИТ МИ ЗА ЦИ Я П РО ЦЕ СС ОВМ ОД ЕЛ ИР ОВ АН ИЯ С ЛО ЖН ЫХН ЕП РЕ РЫ ВН ЫХО БЪ ЕК ТО В
Рассмотренный выше метод построения граф-модели базируется
на знании объекта и логических рассуждениях исследователя.
Независимо от использования формальных соотношений,
описывающих связи между элементами модели, он является по
своему существу логическим, содержит мало формальных приемов,
носит субъективный, плохо структурированный характер.
Ниже рассматриваются два метода, алгоритмизирующие и
упорядочивающие процедуру моделирования: формализованная
пошаговая процедура инженерно-логического метода составления
модели и формальный алгоритм на базе обращения функциональных
схем. Их использование существенно снижает влияние
отмеченных факторов.
3.1. П ОШ АГ ОВ АЯП РО ЦЕ ДУ РАИ НЖ ЕН ЕР НОЛ ОГ ИЧ ЕС КО ГОМ ЕТ ОД А
С ОС ТА ВЛ ЕН ИЯГ РА Ф-М ОД ЕЛ И
Пошаговая процедура составления граф-модели базируется,
как и ранее, на глубоком изучении структуры и функционирования
исследуемого объекта. Она рекомендуется к применению при
отсутствии явно выраженной блочной структуры объекта исследования.
Ярким примером такого случая является цилиндропоршневая
группа двигателя внутреннего сгорания.
Особенностью построения граф-модели любого сложного
объекта диагностирования является необходимость его предварительного
условного представления в виде некоторого множества
составных частей. Если объект имеет явно выраженную блочную
структуру, т. е. выполнен так, что каждой его составной
части может быть противопоставлена определенная функция,
реализуемая этой частью, и могут быть выделены соответствующие
входы и выходы, представления объекта по функциям и со ставным
частям совпадают и составление первоначальной граф-
модели не вызывает затруднений. Такому разбиению, в частности,
могут быть подвергнуты многие сложные электро- и радиотехнические
устройства, для которых известна или может быть разработана
блочная функциональная схема. Число блоков такой
схемы зависит от желаемой степени конкретизации и глубины
диагностирования: они могут быть объединены путем соединения
последовательно подключенных блоков в более крупные. Укрупнение
составных частей, однако, ведет к уменьшению глубины
поиска дефекта и к загрублению диагностического поиска.
63
Однако часто, в особенности когда объектами диагностирования
являются преобразователи энергии, затруднительно выделение
конструктивных функционально самостоятельных составных
частей и соответствующих входов и выходов: входы и выходы
как бы меняются местами. Так, для перемещения поршня двигателя
внутреннего сгорания в такте сжатия в соответствии с
его функциональным назначением оказывается сложным указать,
что является входом и что выходом. В таких случаях правильный
ответ может быть получен только анализом причинно-следственных
связей между параметрами и свойствами объекта. Возникает
задача построения граф-модели такого сложного объекта,
у которого совпадения представления по функциям и составным
частям нет, и если есть, то только в самом общем виде на уровне
основных функциональных свойств. Изложим методику составления
граф-модели для такого объекта в виде алгоритма.
Алгоритм 3.1.
Ш аг1. На основании анализа принципиальной и функциональной
схем непрерывного объекта диагностирования выбирается
множество свойств, существенно важных с точки зрения
исследователя для описания функционирования объекта на о с нове
его назначения и содержательного описания. Мощность этого
множества существенно зависит от выбранного уровня конкретизации.
Ш аг 2. Выбранные свойства отождествляются с функциями
и изображаются в виде множества вершин, имеющих имя свойства
(функции).
Ш аг 3. На выбранном множестве свойств выявляются причинно-
следственные связи, вытекающие из физических представлений
процессов нормального функционирования в соответствии
с их содержательным описанием.
Ш аг4. Соединяются ребрами вершины модели в соответствии
с выбранными связями. При этом ребро проводится независимо
от того, известно или неизвестно количественное отношение
между связываемыми вершинами. Необходимо помнить, что
ребра графа не отображают ни входных, ни выходных воздействий
или сигналов. Они лишь свидетельствуют о существовании причинно-
следственных связей и отображают таким образом множество
бинарных отношений v на множестве свойств функционирования,
которые могут быть описаны как формально, так и в
терминах естественного языка. Ребра проводятся по следующему
правилу: вершина х, соединяется с вершиной Xj ребром, имеющим
направление от х, к xh если проявление свойства, отображаемого
вершиной Xi, непосредственно ≪вызывает≫ проявление свойства,
отображаемого вершиной л;/.
Итогом четвертого шага является граф-модель объекта диагностирования
в виде графа в прострлнстве свойств нормального
64
функционирования, которую будем называть первоначальной моделью.
Примечание: при наличии первоначальной укрупненной функциональной
схемы объекта (с изображением основных составных
частей его и основных функций) может быть использован
другой вариант первых шагов процедуры моделирования.
Ш агГ Строится укрупненная функциональная схема объекта.
Ш аг2'. Входные и выходные воздействия (связи) функциональных
блоков отмечаются символами дс,-, 1 = 1, 2, ...; функциональные
блоки отмечаются цифрами 1, 2, ... .
Ш аг3'. Рассматривая функциональную схему как граф G'
с вершинами 1, 2, ... и ребрами xt, t = l, 2, ..., осуществляем обращение
графа G' в другой граф с вершинами л:„/ = 1, 2, ... и не-
обозначенными ребрами (см. рис. 2.4).
Ш аг5. Уточняется первоначальная граф-модель. С этой целью
просматриваются все основные свойства объекта, отображенные
в виде вершин первоначального графа. Если среди них имеются
собирательные (составные) свойства, их расщепляют до получения
простых свойств. Под ≪простым≫ свойством понимают такое,
которое не порождает новых свойств на выбранном уровне
конкретизации.
Ш аг6. Анализируется процесс функционирования объекта при
наличии неисправностей. Уровень детализации в значительной
мере зависит от статистики неисправностей, характерных для
тех или иных условий или режимов работы. Первоначальная
уточненная модель дополняется свойствами, отсутствующими в
процессе нормального функционирования, но имеющими место
при наличии неисправностей. При наличии неисправностей, характерных
для особых условий или режимов функционирования,
модель должна быть дополнена сведениями об этих условиях.
Последние образуют вершины графа, отображающие свойства
влияющей среды.
В результате этого шага получается множество дополнительных
вершин.
Ш аг7. Выявляются причинно-следственные связи для расщепленных
и дополнительных вершин. Ребра проводятся в соответствии
с содержательным описанием при соблюдении правил
гомоморфного отображения детализированного графа G(X, U)
в первоначальный граф G'(X, U'): если в графе G для вершин
Х\, х 2^ Х существует ребро и = < Х\, x2> ^ U , то в графе
G' = 0(G) ребро d (u )=U ' направлено от образа л:1 = 0(л:i) к образу
x'2 = Q(x2). При этом различные вершины графа G могут в графе
G' иметь один и тот же образ.
Следствием такого отображения является то, что если в
первоначальном графе G' существует ориентированное ребро между
вершинами х' и х], то по крайней мере одна вершина х,•из
3 Зак. 666 65
детализированной области Xt графа G должна иметь ребро к одной
вершине x f из области X,.
Модель, полученную таким образом, удобно назвать ≪полной≫.
Ш аг8. Здесь реализуется переход от пространства свойств
к пространству параметров. Для каждого свойства лг, функционирования
объекта находится параметр /, или г,, который наиболее
адекватно характеризует выходной процесс функционирования
того или иного агрегата, узла или элемента. Строится
новая модель, в которой вершины —свойства Xi детализированного
графа замещаются вершинами —параметрами л, в
соответствии с их классификацией (см. § 2.1). Ребра нового графа
полностью совпадают с ребрами графа, построенного в шаге 7.
Ш аг9. Для случая, когда одно или несколько свойств функционирования
характеризуется подмножеством параметров, применить
для каждого из свойств процедуру гомоморфного отображения
графов в соответствии с правилами шага 7.
Ш аг10. В зависимости от списка возможных неисправностей
для соответствующих вершин fiy г; в виде прообразов Г - '(/,),
Г ~ ' (г ;) указываются те структурные параметры в/, от значения
которых непосредственно зависят значения параметров f, или
Гу. В результате получаем граф-модель нормального функционирования
в пространстве параметров.
Ш аг11. Для каждого элемента множества состояний отмечаются
распознаваемые дефекты dk, список которых считается заданным.
Под дефектом понимается выход за пределы допустимых
значений одного или нескольких структурных или выходных параметров,
в том числе сопутствующих, вносимых в модель по
следующему шагу 12.
Ш аг12. Граф-модель дополняется сопутствующими параметрами
vs—вершинами, отображающими возникающие в процессе
функционирования объекта признаки неисправностей и играющими
роль симптомов. В результате этого шага мы получим модель
непрерывного объекта, функционирующего при наличии
неисправностей.
Таким образом, имеет место следующее соответствие приведенного
пошагового алгоритма ранее рассмотренным в § 2.3—.5
процедурам: первый этап охватывает шаги 1 и 2 алгоритма.
На этом этапе функциональная блок-схема объекта преобразуется
в граф, отображающий предполагаемую модель в пространстве
свойств функционирования.
Второй этап охватывает шаги 3 и 4, и его реализация приводит
к получению первоначальной топологической модели в условиях
нормального функционирования. Третий этап охватывает шаги 5,
