- •1. Что такое катализ?
- •2. Каково значение каталитических процессов в химической промышленности?
- •3. Что происходит при каталитическом взаимодействии?
- •4. Какие факторы влияют на скорость каталитической реакции?
- •5 . Какие стадии составляют процесс гетерогенно-каталитического взаимодействия? Основные стадии гетерогенного каталитического процесса
- •6. Классификация процессов и реакторов по режиму протекания процесса.
- •7. Реакторы с неподвижным слоем катализатора.
- •8. Реакторы с кипящим слоем катализатора. Р еакторы с псевдоожиженным (кипящим) или восходящим слоем катализатора (рис. 1.5).
- •9. Классификация и химия катализаторов. Классификация катализаторов
- •10. Природа носителей для катализаторов.
- •11. Показатели качества гетерогенных катализаторов.
- •12. Технологические процессы по подготовке сырья и его переработке.
- •13. Технологические решения по управлению процессом для получения катализаторов. (кто придумал этот вопрос?)
- •14. Анализ качества катализаторов. (кто придумал этот вопрос?)
- •15. Методы анализа катализаторов. (кто придумал этот вопрос?)
- •16. Методы получения катализаторов с заданными свойствами. (кто придумал этот вопрос?)
- •17. Решение вопросов экологической безопасности при производстве катализаторов. (кто придумал этот вопрос?)
- •18. Каковы основные технические характеристики катализаторов?
- •19. Из каких основных компонентов состоят твердые катализаторы? Состав и пористая структура твердых катализаторов
- •20. Каковы основные характеристики пористой структуры контактных масс?
- •21. Как можно охарактеризовать материалы с губчатой, корпускулярной и смешанной структурой?
- •1. В чем различие монодисперсной и полидисперсной структур?
- •2. Какие процессы протекают при взаимодействии катализатора с реакционной средой?
- •Спекание
- •3. Какие факторы влияют на устойчивость катализатора во время работы?
- •5. Какие основные этапы включает производство контактных масс?
- •6. На какие группы можно разделить катализаторы по методам синтеза и приготовления?
- •7. Каковы особенности формования носителей и катализаторов?
- •8. В чем заключаются основные стадии производства осажденных контактных масс?
- •9. На чем основано получение катализаторов методом пропитки?
- •10. Каковы особенности метода пропитки?
- •1 1. Каковы основные принципы синтеза смешанных катализаторов?
- •1 2. В чем состоит сущность механохимической активации?
- •13. Каковы особенности получения плавленых и скелетных контактных масс?
- •14. Как получают катализаторы на основе цеолитов?
- •15. С какой целью производят исследования катализаторов?
- •16. Каковы основные принципы исследования состава катализаторов?
- •17. Какими методами определяют активность контактных масс?
- •18. В чем суть основных способов исследования пористой структуры катализаторов?
- •19. Как определяют истинную и кажущуюся плотности?
- •20. Какие исследования проводят для определения механической прочности катализаторов?
- •21. В чем заключается метод тпв?
- •1. Катализ и каталитические процессы в химической промышленности.
- •2. Сущность каталитического действия.
- •3. Классификация катализаторов по методам получения.
- •4. Формование носителей и катализаторов.
- •5. Основные факторы, влияющие на скорость каталитической реакции.
- •6. Основные стадии производства осажденных контактных масс.
- •7. Основные стадии процесса гетерогенно-каталитического взаимодействия. Основные стадии гетерогенного каталитического процесса
- •8. Получение катализаторов методом пропитки.
- •9. Влияние температуры на выход продукта в каталитических процессах.
- •1 0. Получение смешанных катализаторов.
- •11. Реакторы с неподвижным слоем катализатора.
- •1 2. Сущность механохимической активации.
- •1 3. Реакторы с кипящим слоем катализатора.
- •14. Получение плавленых и скелетных контактных масс.
- •15. Основные технические характеристики катализаторов.
- •16. Производство катализаторов на основе цеолитов.
- •17. Основные компоненты твердых катализаторов. Состав и пористая структура твердых катализаторов
- •18. Основные цели и задачи исследования катализаторов.
- •19. Пористая структура контактных масс.
- •20. Основные методы исследования состава катализаторов.
- •21. Материалы с губчатой, корпускулярной и смешанной структурой.
- •22. Методы определения активности контактных масс.
- •23. Монодисперные, бидисперсные и полидисперсные структуры.
- •24. Основные способы исследования пористой структуры катализаторов.
- •25. Взаимодействие катализатора с реакционной средой.
- •Спекание
- •26. Основные факторы, влияющие на устойчивость катализатора.
- •27. Определение механической прочности катализаторов.
- •28. Основные этапы производства контактных масс.
- •29. Метод термопрограммированного восстановления катализаторов.
- •30. Классификация катализаторов по методам получения.
- •31. Сущность каталитического действия.
- •32. Определение механической прочности катализаторов.
- •33. Основные этапы производства контактных масс.
- •34. Определение истинной и кажущейся плотности.
- •35. Основные стадии гетерогенного каталитического процесса. Основные стадии гетерогенного каталитического процесса
- •36. Каталитические реакторы для экзотермических каталитических реакций.
- •37. Определение удельной поверхности катализаторов методом бэт.
22. Методы определения активности контактных масс.
При использовании статического метода реакцию проводят в замкнутом объеме до установления термодинамического равновесия либо до полного превращения одного из исходных реагентов. Концентрация реагентов изменяется от исходной до равновесной, соответственно изменяется и скорость реакции по закону действующих масс.
Часто статический метод используют для измерения скоростей реакций, приводящих к изменению числа молекул, что позволяет следить за ходом реакции по изменению давления.
Статические методы рекомендуется применять лишь для изучения катализаторов стационарных в отношении реакционных смесей [1, 8].
В проточных установках поток реагентов непрерывно пропускают с определенной скоростью через реакционный объем, содержащий катализатор. На входе и выходе из реактора производят замеры параметров процесса, анализы состава реакционной смеси.
Проточные методы позволяют проводить кинетические исследования в установившихся условиях, т. е. при постоянстве исходных концентраций, температур, давления, степени перемешивания и других параметров в каждом отдельном опыте. При переходе от одного опыта к другому изменяют определенные параметры процесса на заданное значение.
Проточный метод [1, 8] является интегральным и непрерывным и позволяет осуществлять процесс как угодно долго при заданных концентрациях, температурах, давлениях, линейных и объемных скоростях газового потока на входе в реактор. Естественно, что концентрации реагирующих веществ и другие параметры изменяются по длине (высоте) реактора в результате химического превращения. Аппаратурное оформление таких установок проще, а чувствительность ниже, чем статических.
При использовании проточного метода с неподвижным слоем катализатора в реакторе обычно допускают, что движение газа в слое катализатора отвечает режиму идеального вытеснения, т.е. пренебрегают радиальными градиентами давления, температуры, концентрации. Основное достоинство проточного метода - возможность определения каталитической активности при стационарном состоянии катализатора. Существенным недостатком является невозможность прямого измерения скорости реакции и трудность осуществления в реальных условиях режима идеального вытеснения [8].
Безградиентный проточно-циркуляционный метод |1] предполагает практически полное отсутствие в реакционной зоне перепадов концентраций и температур. Перемешивание в проточно-циркуляционной системе достигается интенсивной циркуляцией реакционной смеси через катализатор в замкнутом объеме при непрерывном поступлении и выведении газового потока, причем количество циркулирующего газа должно значительно превышать количество вновь вводимого исходного газа.
Основные достоинства проточно-циркуляционного метода:
1. Прямое измерение скорости реакции в каждом опыте.
2. Легкость достижения постоянства температуры в реакторе, даже для реакций со значительным тепловым эффектом, благодаря интенсивной циркуляции и соответственно малому изменению степени превращения в слое катализатора [8].
3. Осуществление процесса в режиме, аналогичном полному смешению, т. е. без внешнедиффузионных торможений, при практическом отсутствии перепадов концентраций и температур.
4. Возможность работы с любым количеством катализатора, вплоть до одной гранулы, при любых размерах гранул и соотношениях размеров гранул и реактора.
К недостаткам проточно-циркуляционного метода можно отнести:
1. Сложность аппаратурного оформления.
2. Необходимость достаточных количеств исходных веществ и времени для достижения стационарного состояния, в некоторых случаях - возможное усиление побочных процессов.
Импульсные методы исследования активности катализаторов предусматривают использование хроматографического адсорбента в качестве катализатора с периодической подачей на него реагирующих веществ. В хроматографической колонке происходит разделение продуктов и непрореагировавших компонентов реакционной смеси [1].
В импульсном каталитическом микрореакторе через систему пропускают с постоянной скоростью газ-носитель (инертный или один из реагентов), в который введен реагент. Из реактора газ-носитель поступает в термостатированную колонку газового хроматографа и затем в детектор.
Метод позволяет за короткий срок оценить относительную активность и селективность большого числа катализаторов при варьировании температуры и в небольших пределах времени контакта. Необходимо, однако, помнить, что импульсное введение компонентов реакционной смеси исключает возможность достижения стационарного состояния катализатора. Измеренная таким способом активность может в некоторых случаях очень существенно отличаться от стационарной активности исследуемых катализаторов. Эти отличия зависят от кинетических особенностей изучаемой реакции, наличия диффузионных процессов и других факторов [8].