Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Arkhiv_WinRAR / Tхюёхьр Tруёрэцр

.doc
Скачиваний:
17
Добавлен:
17.03.2015
Размер:
26.62 Кб
Скачать

Теорема Лагранжа:

Пусть функция f(x) непрерывна на отрезке [а,b] и имеет про­изводную на интервале (а,b). Тогда существует на ин­тервале (а,b) точка с, для которой выполняется равен­ство f(b)–f(a)=(b-a)f'(c) при (а<с<b){1}. Теорема Лагранжа имеет простой геометрический .смысл, если записать её в виде (f(b)–f(a))/(b–a)=f'(c) при (а<с<b). Левая часть этого равенства есть тангенс угла наклона к оси х хорды, стягивающей точки (a,f(a)) и (b,f(b)) графика функции y=f(x), а правая часть есть тангенс угла наклона касательной к графику в некоторой промежуточной точке с абсциссой с(а,b). Теорема Лагранжа утверждает, что если кривая (рис) есть график непрерывной на [а,b] функции, имеющей производную на (а,b), то на этой кривой существует точка, соответствующая некоторой абсциссе с(а<с<b) такая, что касательная к кривой в этой точке параллельна хорде, стягивающей концы кривой (a,f(a)) и (b,f(b)). Равенство {1} наз. формулой (Лагранжа) конеч­ных приращений. Промежуточное значение с удобно запи­сывать в виде c=a+(b–a), где  есть некоторое число, удовлетворяющее неравенствам 0<<1. Тогда формула Лагранжа примет видf(b)–f(a)=(b-a)f'(a+(b–a)) (0<<1). {2} Она верна, очевидно, не только для a<b, но и для ab.

Соседние файлы в папке Arkhiv_WinRAR