- •Введение
- •От издательства
- •ГЛАВА 1. Организация процесса конструирования
- •Определение технологии конструирования программного обеспечения
- •Классический жизненный цикл
- •Макетирование
- •Стратегии конструирования ПО
- •Инкрементная модель
- •Быстрая разработка приложений
- •Спиральная модель
- •Компонентно-ориентированная модель
- •Тяжеловесные и облегченные процессы
- •ХР-процесс
- •Модели качества процессов конструирования
- •Контрольные вопросы
- •ГЛАВА 2. Руководство программным проектом
- •Процесс руководства проектом
- •Начало проекта
- •Измерения, меры и метрики
- •Процесс оценки
- •Анализ риска
- •Планирование
- •Трассировка и контроль
- •Планирование проектных задач
- •Размерно-ориентированные метрики
- •Функционально-ориентированные метрики
- •Выполнение оценки в ходе руководства проектом
- •Выполнение оценки проекта на основе LOC- и FP-метрик
- •Конструктивная модель стоимости
- •Модель композиции приложения
- •Модель раннего этапа проектирования
- •Модель этапа постархитектуры
- •Предварительная оценка программного проекта
- •Анализ чувствительности программного проекта
- •Сценарий понижения зарплаты
- •Сценарий наращивания памяти
- •Сценарий использования нового микропроцессора
- •Сценарий уменьшения средств на завершение проекта
- •Контрольные вопросы
- •Ошибки
- •Стоимость
- •Выполнение операции не изменяет состояния объекта
- •Проблема
- •Читать карту клиента
- •ГЛАВА 3. Классические методы анализа
- •Структурный анализ
- •Диаграммы потоков данных
- •Описание потоков данных и процессов
- •Расширения для систем реального времени
- •Расширение возможностей управления
- •Модель системы регулирования давления космического корабля
- •Методы анализа, ориентированные на структуры данных
- •Метод анализа Джексона
- •Методика Джексона
- •Шаг объект-действие
- •Шаг объект-структура
- •Шаг начального моделирования
- •Контрольные вопросы
- •ГЛАВА 4. Основы проектирования программных систем
- •Особенности процесса синтеза программных систем
- •Особенности этапа проектирования
- •Структурирование системы
- •Моделирование управления
- •Декомпозиция подсистем на модули
- •Модульность
- •Информационная закрытость
- •Связность модуля
- •Функциональная связность
- •Информационная связность
- •Коммуникативная связность
- •Процедурная связность
- •Временная связность
- •Логическая связность
- •Связность по совпадению
- •Определение связности модуля
- •Сцепление модулей
- •Сложность программной системы
- •Характеристики иерархической структуры программной системы
- •Контрольные вопросы
- •ГЛАВА 5. Классические методы проектирования
- •Метод структурного проектирования
- •Типы информационных потоков
- •Проектирование для потока данных типа «преобразование»
- •Проектирование для потока данных типа «запрос»
- •Диаграмма потоков данных
- •Метод проектирования Джексона
- •Доопределение функций
- •Учет системного времени
- •Контрольные вопросы
- •ГЛАВА 6. Структурное тестирование программного обеспечения
- •Основные понятия и принципы тестирования ПО
- •Тестирование «черного ящика»
- •Тестирование «белого ящика»
- •Особенности тестирования «белого ящика»
- •Способ тестирования базового пути
- •Потоковый граф
- •Цикломатическая сложность
- •Шаги способа тестирования базового пути
- •Способы тестирования условий
- •Тестирование ветвей и операторов отношений
- •Способ тестирования потоков данных
- •Тестирование циклов
- •Простые циклы
- •Вложенные циклы
- •Объединенные циклы
- •Неструктурированные циклы
- •Контрольные вопросы
- •ГЛАВА 7. Функциональное тестирование программного обеспечения
- •Особенности тестирования «черного ящика»
- •Способ разбиения по эквивалентности
- •Способ анализа граничных значений
- •Способ диаграмм причин-следствий
- •Контрольные вопросы
- •ГЛАВА 8. Организация процесса тестирования программного обеспечения
- •Методика тестирования программных систем
- •Тестирование элементов
- •Тестирование интеграции
- •Нисходящее тестирование интеграции
- •Восходящее тестирование интеграции
- •Сравнение нисходящего и восходящего тестирования интеграции
- •Тестирование правильности
- •Системное тестирование
- •Тестирование восстановления
- •Тестирование безопасности
- •Стрессовое тестирование
- •Тестирование производительности
- •Искусство отладки
- •Контрольные вопросы
- •ГЛАВА 9. Основы объектно-ориентированного представления программных систем
- •Принципы объектно-ориентированного представления программных систем
- •Абстрагирование
- •Инкапсуляция
- •Модульность
- •Иерархическая организация
- •Объекты
- •Общая характеристика объектов
- •Виды отношений между объектами
- •Связи
- •Видимость объектов
- •Агрегация
- •Классы
- •Общая характеристика классов
- •ПРИМЕЧАНИЕ
- •Виды отношений между классами
- •Ассоциации классов
- •Наследование
- •Полиморфизм
- •Агрегация
- •Зависимость
- •Конкретизация
- •Контрольные вопросы
- •ГЛАВА 10. Базис языка визуального моделирования
- •Унифицированный язык моделирования
- •Предметы в UML
- •Отношения в UML
- •Диаграммы в UML
- •Механизмы расширения в UML
- •Контрольные вопросы
- •ГЛАВА 11. Статические модели объектно-ориентированных программных систем
- •Вершины в диаграммах классов
- •Свойства
- •ПРИМЕЧАНИЕ
- •Операции
- •Организация свойств и операций
- •Множественность
- •Отношения в диаграммах классов
- •Деревья наследования
- •Примеры диаграмм классов
- •Контрольные вопросы
- •Моделирование поведения программной системы
- •Диаграммы схем состояний
- •Действия в состояниях
- •Условные переходы
- •Вложенные состояния
- •Диаграммы деятельности
- •Диаграммы взаимодействия
- •Диаграммы сотрудничества
- •Диаграммы последовательности
- •Диаграммы Use Case
- •Актеры и элементы Use Case
- •Отношения в диаграммах Use Case
- •Работа с элементами Use Case
- •Спецификация элементов Use Case
- •Главный поток
- •Подпотоки
- •Альтернативные потоки
- •Пример диаграммы Use Case
- •Построение модели требований
- •Расширение функциональных возможностей
- •Кооперации и паттерны
- •Паттерн Наблюдатель
- •Паттерн Компоновщик
- •Паттерн Команда
- •Бизнес-модели
- •Контрольные вопросы
- •ГЛАВА 13. Модели реализации объектно-ориентированных программных систем
- •Компонентные диаграммы
- •Компоненты
- •Интерфейсы
- •Компоновка системы
- •Разновидности компонентов
- •Использование компонентных диаграмм
- •Моделирование программного текста системы
- •Моделирование реализации системы
- •Основы компонентной объектной модели
- •Организация интерфейса СОМ
- •Unknown — базовый интерфейс COM
- •Серверы СОМ-объектов
- •Преимущества COM
- •Работа с СОМ-объектами
- •Создание СОМ-объектов
- •Повторное использование СОМ-объектов
- •Маршалинг
- •IDL-описаниеи библиотека типа
- •Диаграммы размещения
- •Узлы
- •Использование диаграмм размещения
- •Контрольные вопросы
- •ГЛАВА 14. Метрики объектно-ориентированных программных систем
- •Метрические особенности объектно-ориентированных программных систем
- •Локализация
- •Инкапсуляция
- •Информационная закрытость
- •Наследование
- •Абстракция
- •Эволюция мер связи для объектно-ориентированных программных систем
- •Связность объектов
- •TCC(Stack)=7/10=0,7
- •Сцепление объектов
- •Набор метрик Чидамбера и Кемерера
- •Использование метрик Чидамбера-Кемерера
- •Метрики Лоренца и Кидда
- •Метрики, ориентированные на классы
- •Операционно-ориентированные метрики
- •Метрики для ОО-проектов
- •Набор метрик Фернандо Абреу
- •Метрики для объектно-ориентированного тестирования
- •Метрики инкапсуляции
- •Метрики наследования
- •Метрики полиморфизма
- •Контрольные вопросы
- •Эволюционно-инкрементная организация жизненного цикла разработки
- •Этапы и итерации
- •Рабочие потоки процесса
- •Модели
- •Технические артефакты
- •Управление риском
- •Первые три действия относят к этапу оценивания риска, последние три действия — к этапу контроля риска [20].
- •Идентификация риска
- •Анализ риска
- •Ранжирование риска
- •Планирование управления риском
- •Разрешение и наблюдение риска
- •Этапы унифицированного процесса разработки
- •Этап НАЧАЛО (Inception)
- •Этап РАЗВИТИЕ (Elaboration)
- •Этап КОНСТРУИРОВАНИЕ (Construction)
- •Этап ПЕРЕХОД (Transition)
- •Оценка качества проектирования
- •Пример объектно-ориентированной разработки
- •Этап НАЧАЛО
- •Этап РАЗВИТИЕ
- •Этап КОНСТРУИРОВАНИЕ
- •Разработка в стиле экстремального программирования
- •ХР-реализация
- •ХР-итерация
- •Элемент ХР-разработки
- •Коллективное владение кодом
- •Взаимодействие с заказчиком
- •Стоимость изменения и проектирование
- •Контрольные вопросы
- •ГЛАВА 16. Объектно-ориентированное тестирование
- •Расширение области применения объектно-ориентированного тестирования
- •Изменение методики при объектно-ориентированном тестировании
- •Особенности тестирования объектно-ориентированных «модулей»
- •Тестирование объектно-ориентированной интеграции
- •Объектно-ориентированное тестирование правильности
- •Проектирование объектно-ориентированных тестовых вариантов
- •Инкапсуляция
- •Полиморфизм
- •Тестирование, основанное на ошибках
- •Тестирование, основанное на сценариях
- •Тестирование поверхностной и глубинной структуры
- •Способы тестирования содержания класса
- •Стохастическое тестирование класса
- •Тестирование разбиений на уровне классов
- •Способы тестирования взаимодействия классов
- •Стохастическое тестирование
- •Тестирование разбиений
- •Тестирование на основе состояний
- •Предваряющее тестирование при экстремальной разработке
- •Контрольные вопросы
- •ГЛАВА 17. Автоматизация конструирования визуальной модели программной системы
- •Общая характеристика CASE-системы Rational Rose
- •Создание диаграммы Use Case
- •Создание диаграммы последовательности
- •Создание диаграммы классов
- •ПРИМЕЧАНИЕ
- •ПРИМЕЧАНИЕ
- •Создание компонентной диаграммы
- •Генерация программного кода
- •Заключение
- •Приложение А.
- •Факторы затрат постархитектурной модели СОСОМО II
- •Факторы персонала
- •Низкий
- •Ada.Text_IO
- •Любой целый тип со знаком
- •Приложение Б.Терминология языка UML и унифицированного процесса
- •Приложение В. Основные средства языка программирования Ada 95
- •Список литературы
Таблица 7.1. Таблица решений для расчета оплаты за электричество
Номера столбцов — > |
|
1 |
2 |
3 |
4 |
|
Условия |
Причины |
1 |
1 |
0 |
1 |
0 |
|
|
2 |
0 |
1 |
0 |
1 |
|
|
3 |
1 |
1 |
0 |
0 |
|
|
4 |
0 |
0 |
1 |
1 |
|
Вторичные причины |
11 |
0 |
0 |
1 |
0 |
|
|
12 |
0 |
1 |
0 |
0 |
Действия |
Следствия |
101 |
1 |
0 |
0 |
0 |
|
|
102 |
0 |
1 |
1 |
0 |
|
|
103 |
0 |
0 |
0 |
1 |
Контрольные вопросы
1.Каковы особенности тестирования методом «черного ящика»?
2.Какие категории ошибок выявляет тестирование методом «черного ящика»?
3.Какие достоинства имеет тестирование методом «черного ящика»?
4.Поясните суть способа разбиения по эквивалентности.
5.Что такое класс эквивалентности?
6.Что может задавать условие ввода?
7.Какие правила формирования классов эквивалентности вы знаете?
8.Как выбирается тестовый вариант при тестировании по способу разбиения по эквивалентности?
9.Поясните суть способа анализа граничных значений.
10.Чем способ анализа граничных значений отличается от разбиения по эквивалентности?
11.Поясните правила анализа граничных значений.
12.Что такое дерево разбиений? Каковы его особенности?
13. В чем суть способа диаграмм причин-следствий?
14.Что такое причина?
15.Что такое следствие?
16.Дайте общую характеристику графа причинно-следственных связей.
17.Какие функции используются в графе причин и следствий?
18.Какие ограничения используются в графе причин и следствий?
19.Поясните шаги способа диаграмм причин-следствий.
20.Какую структуру имеет таблица решений в способе диаграмм причин-следствий?
21.Как таблица решений преобразуется в тестовые варианты?
ГЛАВА 8. ОРГАНИЗАЦИЯ ПРОЦЕССА ТЕСТИРОВАНИЯ ПРОГРАММНОГО ОБЕСПЕЧЕНИЯ
В этой главе излагаются вопросы, связанные с проведением тестирования на всех этапах конструирования программной системы. Классический процесс тестирования обеспечивает проверку результатов, полученных на каждом этапе разработки. Как правило, он начинается с тестирования в малом, когда проверяются программные модули, продолжается при проверке объединения модулей в систему и завершается тестированием в большом, при котором проверяются соответствие программного продукта требованиям заказчика и его взаимодействие с другими компонентами компьютерной системы. Данная глава последовательно описывает содержание каждого шага тестирования. Здесь же рассматривается организация отладки ПО, которая проводится для устранения выявленных при тестировании ошибок.
Методика тестирования программных систем
Процесс тестирования объединяет различные способы тестирования в спланированную
96
последовательность шагов, которые приводят к успешному построению программной системы (ПС) [3], [13], [64], [69]. Методика тестирования ПС может быть представлена в виде разворачивающейся спирали (рис. 8.1).
В начале осуществляется тестирование элементов (модулей), проверяющее результаты этапа кодирования ПС. На втором шаге выполняется тестирование интеграции, ориентированное на выявление ошибок этапа проектирования ПС. На третьем обороте спирали производится тестирование правильности, проверяющее корректность этапа анализа требований к ПС. На заключительном витке спирали проводится системное тестирование, выявляющее дефекты этапа системного анализа ПС.
Охарактеризуем каждый шаг процесса тестирования.
1.Тестирование элементов. Цель — индивидуальная проверка каждого модуля. Используются способы тестирования «белого ящика».
Рис. 8.1. Спираль процесса тестирования ПС
2.Тестирование интеграции. Цель — тестирование сборки модулей в программную систему. В основном применяют способы тестирования «черного ящика».
3.Тестирование правильности. Цель — проверить реализацию в программной системе всех функциональных и поведенческих требований, а также требования эффективности. Используются исключительно способы тестирования «черного ящика».
4.Системное тестирование. Цель — проверка правильности объединения и взаимодействия всех
элементов компьютерной системы, реализации всех системных функций.
Организация процесса тестирования в виде эволюционной разворачивающейся спирали обеспечивает максимальную эффективность поиска ошибок. Однако возникает вопрос — когда заканчивать тестирование?
Ответ практика обычно основан на статистическом критерии: «Можно с 95%-ной уверенностью сказать, что провели достаточное тестирование, если вероятность безотказной работы ЦП с программным изделием в течение 1000 часов составляет по меньшей мере 0,995».
Научный подход при ответе на этот вопрос состоит в применении математической модели отказов. Например, для логарифмической модели Пуассона формула расчета текущей интенсивности отказов имеет вид:
λ(t) = |
λ0 |
, |
(8.1) |
λ0 × p ×t +1 |
где λ(t) — текущая интенсивность программных отказов (количество отказов в единицу времени); λ0 —
начальная интенсивность отказов (в начале тестирования); р — экспоненциальное уменьшение интенсивности отказов за счет обнаруживаемых и устраняемых ошибок; t —время тестирования.
С помощью уравнения (8.1) можно предсказать снижение ошибок в ходе тестирования, а также время, требующееся для достижения допустимо низкой интенсивности отказов.
Тестирование элементов
Объектом тестирования элементов является наименьшая единица проектирования ПС — модуль. Для обнаружения ошибок в рамках модуля тестируются его важнейшие управляющие пути. Относительная сложность тестов и ошибок определяется как результат ограничений области тестирования элементов. Принцип тестирования — «белый ящик», шаг может выполняться для набора модулей параллельно.
Тестированию подвергаются:
97
интерфейс модуля;
внутренние структуры данных;
независимые пути;
пути обработки ошибок;
граничные условия.
Интерфейс модуля тестируется для проверки правильности ввода-вывода тестовой информации. Если нет уверенности в правильном вводе-выводе данных, нет смысла проводить другие тесты.
Исследование внутренних структур данных гарантирует целостность сохраняемых данных. Тестирование независимых путей гарантирует однократное выполнение всех операторов модуля.
При тестировании путей выполнения обнаруживаются следующие категории ошибок: ошибочные вычисления, некорректные сравнения, неправильный поток управления [3].
Наиболее общими ошибками вычислений являются:
1)неправильный или непонятый приоритет арифметических операций;
2)смешанная форма операций;
3)некорректная инициализация;
4)несогласованность в представлении точности;
5)некорректное символическое представление выражений.
Источниками ошибок сравнения и неправильных потоков управления являются:
1)сравнение различных типов данных;
2)некорректные логические операции и приоритетность;
3)ожидание эквивалентности в условиях, когда ошибки точности делают эквивалентность невозможной;
4)некорректное сравнение переменных;
5)неправильное прекращение цикла;
6)отказ в выходе при отклонении итерации;
7)неправильное изменение переменных цикла.
Обычно при проектировании модуля предвидят некоторые ошибочные условия. Для защиты от ошибочных условий в модуль вводят пути обработки ошибок. Такие пути тоже должны тестироваться. Тестирование путей обработки ошибок можно ориентировать на следующие ситуации:
1)донесение об ошибке невразумительно;
2)текст донесения не соответствует, обнаруженной ошибке;
3)вмешательство системных средств регистрации аварии произошло до обработки ошибки в модуле;
4)обработка исключительного условия некорректна;
5)описание ошибки не позволяет определить ее причину.
И, наконец, перейдем к граничному тестированию. Модули часто отказывают на «границах». Это означает, что ошибки часто происходят:
1)при обработке n-го элемента n-элементного массива;
2)при выполнении m-й итерации цикла с т проходами;
3)при появлении минимального (максимального) значения.
Тестовые варианты, ориентированные на данные ситуации, имеют высокую вероятность обнаружения ошибок.
Тестирование элементов обычно рассматривается как дополнение к этапу кодирования. Оно начинается после разработки текста модуля. Так как модуль не является автономной системой, то для реализации тестирования требуются дополнительные средства, представленные на рис. 8.2.
98
Рис. 8.2. Программная среда для тестирования модуля
Дополнительными средствами являются драйвер тестирования и заглушки. Драйвер — управляющая программа, которая принимает исходные данные (InData) и ожидаемые результаты (ExpRes) тестовых вариантов, запускает в работу тестируемый модуль, получает из модуля реальные результаты (OutData) и формирует донесения о тестировании. Алгоритм работы тестового драйвера приведен на рис. 8.3.
99