Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Физика модуль теория.doc
Скачиваний:
31
Добавлен:
23.02.2015
Размер:
522.75 Кб
Скачать

4) Работа идеального газа. Внутренняя энергия и теплоемкость (молярная и удельная) идеального газа.

Работа идеального газа в изопроцессах.

Первый закон термодинамики (закон сохранения энергии для тепловых процессов) определяет количественное соотношение между изменением внутренней энергии системы дельта U, количеством теплоты Q, подведенным к ней, и суммарной работой внешних сил A, действующих на систему.

Первый закон термодинамики - Изменение внутренней энергии системы при ее переходе из одного состояния в другое равно сумме количества теплоты, подведенного к системе извне, и работы внешних сил, действующих на нее:

Первый закон термодинамики - количество теплоты, подведенное к системе, идет на изменение ее внутренней энергии и на совершение системой работы над внешними телами:

Частные случаи первого закона термодинамики для изопроцессов

При изохорном процессе объем газа остается постоянным, поэтому газ не совершает работу. Изменение внутренней энергии газа происходит благодаря теплообмену с окружающими телами:

При изотермическом процессе количество теплоты, переданное газу от нагревателя, полностью расходуется на совершение работы:

Q=A'

При изобарном расширении газа подведенное к нему количество теплоты расходуется как на увеличение его внутренней энергии и на совершение работы газом:

Адиабатный процесс - термодинамический процесс в теплоизолированной системе.

Теплоёмкость идеального газа — отношение количества теплоты, сообщённого газу, к изменению температуры δТ, которое при этом произошло.

Молярная теплоёмкость — теплоёмкость 1 моля идеального газа.

Адиабатический[править | править исходный текст]

В адиабатическом процессе теплообмена с окружающей средой не происходит, то есть . Однако, объём, давление и температура меняются, то есть .

Следовательно, теплоёмкость идеального газа в адиабатическом процессе равна нулю: .

Изотермический[править | править исходный текст]

В изотермическом процессе постоянна температура, то есть . При изменении объёма газу передаётся (или отбирается) некоторое количество тепла. Следовательно, теплоёмкость идеального газа равна бесконечности: 

Изохорный[править | править исходный текст]

В изохорном процессе постоянен объём, то есть . Элементарная работа газа равна произведению изменения объёма на давление, при котором происходит изменение (). Первое Начало Термодинамики для изохорного процесса имеет вид:

А для идеального газа

Таким образом,

где  — число степеней свободы частиц газа.

Другая формула: , где γ — показатель адиабаты, R — универсальная газовая постоянная.

Согласно Первому началу термодинамики существует два способа изменения внутренней энергии тела (в нашем случае идеального газа): передать ему некоторое количество теплоты или совершить над ним работу.

dU=δQ+δA, где δA — работа внешних сил над газом.

δAвнеш.сил=-δAгаза

δQ=dU+δAгаза

В расчете на 1 моль:

С=δQ/ΔT=(ΔU+pΔV)/ΔT

ΔU=CV*ΔT

C=CV+(pΔV/ΔT)в данном процессе

Внутренняя энергия идеального газа

Исходя из определения идеального газа, в нем отсутствует потенциальная составляющая внутренней энергии (отсутствуют силы взаимодействия молекул, кроме ударного). Таким образом, внутренняя энергия идеального газа представляет собой только кинетическую энергию движения его молекул. Ранее (уравнение 2.10) было показано, что кинетическая энергия поступательного движения молекул газа прямо пропорциональна его абсолютной температуре

Используя выражение универсальной газовой постоянной (4.6), можно определить величину константы α

Таким образом, кинетическая энергия поступательного движения одной молекулы идеального газа будет определяться выражением

(4.10)

В соответствии с кинетической теорией, распределение энергии по степеням свободы равномерное. У поступательного движения 3 степени свободы. Следовательно, на одну степень свободы движения молекулы газа будет приходиться 1/3 ее кинетической энергии

(4.11)

Для двух, трех и многоатомных молекул газа кроме степеней свободы поступательного движения есть степени свободы вращательного движения молекулы. Для двухатомных молекул газа число степеней свободы вращательного движения равно 2, для трех и многоатомных молекул - 3.

Поскольку распределение энергии движения молекулы по всем степеням свободы равномерное, а число молекул в одном киломоле газа равняется Nμ, внутреннюю энергию одного киломоля идеального газа можно получить, умножив выражение (4.11) на число молекул в одном киломоле и на число степеней свободы движения молекулы данного газа

(4.12)

где Uμ - внутренняя энергия киломоля газа в Дж/кмоль, i - число степеней свободы движения молекулы газа.

Для 1-атомного газа i = 3, для 2-атомного газа i = 5, для 3-атомного и многоатомного газов i = 6 (рис. 4.1).

Для многоатомного газа i=6, так как существуют 3 степени свободы поступательного движения и 3 степени свободы вращательного движения молекул. Может быть еще колебательное движение атомов в молекуле, но его обычно учитывают для реальных газов, используя экспериментальные данные. Для идеальных газов колебательное движение атомов в молекулах тоже может быть учтено при расчете внутренней энергии, об этом будет сказано в разделе "Зависимость теплоемкостей идеальных газов от температуры". На данном этапе изложения материала будем руководствоваться молекулярно-кинетической теорией идеального газа. В соответствии с ней атомы в молекулах идеального газа имеют жесткие связи, т.е. колебательного движения атомов в молекулах нет.

Для одного килограмма идеального газа удельная внутренняя энергия в Дж/кг определяется делением выражения (4.12) на молярную массу газа

(4.13)

Для произвольного количества газа внутренняя энергия определяется как произведение его массы на удельную внутреннюю энергию этого газа

(4.14)

где m - масса газа в кг,

U - полная внутренняя энергия идеального газа.

Если система состоит из нескольких различных по физическим свойствам газов, то, подчиняясь закону сложения (аддитивности), его полная внутренняя энергия будет определяться суммой внутренних энергий компонентов газовой смеси

(4.15)

где n - число компонентов газа в системе.

Полученные уравнения внутренней энергии идеального газа (4.12) - (4.15) указывают на то, что внутренняя энергия идеального газа зависит только от абсолютной температуры газа и числа степеней свободы движения его молекул

или