Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

ВВЕДЕНИЕ В СПЕЦИАЛЬНОСТЬ 090303е7-12

.pdf
Скачиваний:
126
Добавлен:
13.02.2015
Размер:
21.98 Mб
Скачать

4,2

4,116

 

 

 

 

4

 

 

 

 

 

3,901

3,8

 

3,781

 

 

 

 

 

Средняя

3,6

 

 

3,577

 

3,4

 

 

 

3,435

субъективна

3,2

 

 

 

 

 

я оценка

3

 

 

 

 

 

 

ИКМ 64

АДИКМ

GSM 13

VSELP

MP-MLQ

кбит/с

32 кбит/с

кбит/с

8 кбит/с

 

6,4

 

 

 

 

 

 

кбит/с

Рис. 0.7. Зависимость средней субъективной оценки (mean opinion score - MOS) от вида алгоритма и скорости передачи

Винформационных технологиях и связи, мультиплекси́рование(англ. multiplexing, muxing) — уплотнение канала, т. е. передача нескольких потоков (каналов) данных с меньшей скоростью (пропускной способностью) по одному каналу.

Втелекоммуникациях мультиплексирование подразумевает передачу данных по нескольким логическим каналам связи в одном физическом канале. Под физическим каналом подразумевается реальный канал со своей пропускной способностью — медный или оптический кабель, радиоканал.

Винформационных технологиях мультиплексирование подразумевает объединение нескольких потоков данных (виртуальных каналов) в один. Примером может послужить видеофайл, в котором поток (канал) видео объединяется с одним или несколькими каналами аудио.

Устройство или программа, осуществляющая мультиплексирование, называется

мультиплексором.

Принципы мультиплексирования

Мультиплексирование с разделением по частоте (FDM)

Мультиплексирование 3 каналов с разделением по частоте

Мультиплексирование с разделением по частоте (Частотное разделение каналов) (англ. FDM, Frequency Division Multiplexing) предполагает размещение в пределах полосы пропускания канала нескольких каналов с меньшей шириной. Наглядным примером может послужить радиовещание, где в пределах одного канала (радиоэфира) размещено

Так как радиоканал обладает определённым спектром, то в сумме всех передающих устройств и получается современная радиосвязь. Например: спектр сигнала для мобильного телефона 8 Мгц. Если мобильный оператор даёт абоненту частоту 880 МГц, то следующий абонент, может занимать частоту 880+8=888 МГц. Таким образом, если

оператор мобильной связи имеет лицензионную частоту 800—900 Мгц, то он способен обеспечить около 12 каналов, с частотным разделением.

Основные применения

Используется в сетях мобильной связи (см. FDMA) для разделения доступа, в волоконно-

оптической связи аналогом является мультиплексирование с разделением по длине волны (WDM, Wavelength Division Multiplexing) (где частота — это цвет излучения излучателя), в природе — все виды разделений по цвету (частота электромагниных колебаний) и тону (частота звуковых колебаний).

Мультиплексирование с разделением по времени (TDM)

Мультиплексирование с разделением по времени (англ. TDM, Time Division Multiplexing) предполагает кадровую передачу данных, при этом переход с каналов меньшей ширины (пропускной способности) на каналы с большей освобождает резерв для передачи в пределах одного кадра большего объёма нескольких кадров меньшего.

Временное мультиплексирование (англ. Time Division Multiplexing, TDM) — технология аналогового или цифрового мультиплексирования, в котором несколько сигналов или битовых потоков передаются одновременно как подканалы в одном коммуникационном канале. Передача данных в таком канале разделена на временные интервалы (таймслоты) фиксированной длины, отдельные для каждого канала. Например: некоторый блок данных или подканал 1 передается в течение временного интервала 1, подканал 2 во временной интервал 2 и т. д. Один фрейм TDM состоит из одного временного интервала, выделенного одному определенному подканалу. После передачи фрейма последнего из подканалов происходит передача фрейма первого подканала и т. д. по порядку.

Основные применения

беспроводные TDMA-сети,Wi-Fi, WiMAX;

канальная коммутация в PDH и SONET/SDH;

пакетная коммутация в ATM, Frame Relay, Ethernet, FDDI;

коммутация в телефонных сетях;

последовательные шины: PCIe, USB.

Мультиплексирование с разделением по длине волны (WDM)

Мультиплексирование с разделением по длине волны (англ. WDM, Wavelength Division Multiplexing) предполагает передачу по одному оптическому волокну каналов на различных длинах волн. В основе технологии лежит факт того, что волны с разными длинами распространяются независимо друг от друга. Выделяют три основных типа спектрального уплотнения: WDM, CWDM и DWDM.

Основные применения

городские сети передачи данных

магистральные сети передачи данных

Цифровыесистемы передачи

Особенности построения цифровых систем передачи

Основной тенденцией развития телекоммуникаций во всем мире является цифровизация сетей связи, предусматривающая построение сети на базе цифровых методов передачи и

коммутации. Это объясняется следующими существенными преимуществами цифровых методов передачи перед аналоговыми.

Высокая помехоустойчивость. Представление информации в цифровой форме позволяет осуществлять регенерацию (восстановление) этих символов при передаче их по линии связи, что резко снижает влияние помех и искажений на качество передачи информации. Слабая зависимость качества передачи от длины линии связи.

Стабильность параметров каналов ЦСП. Стабильность и идентичность параметров каналов (остаточного затухания, частотной и амплитудной характеристик и др.) определяются в основном устройствами обработки сигналов в аналоговой форме. Поскольку такие устройства составляют незначительную часть оборудования ЦСП, стабильность параметров каналов в таких системах значительно выше, чем в аналоговых. Эффективность использования пропускной способности каналов для передачи дискретных сигналов. При вводе дискретных сигналов непосредственно в групповой тракт ЦСП скорость их передачи может приближаться к скорости передачи группового сигнала. Если, например, при этом будут использоваться временные позиции, соответствующие только одному каналу ТЧ, то скорость передачи будет близка к 64 кбит/с, в то время как в аналоговых системах она обычно не превышает 33,6 кбит/с.

Возможность построения цифровой сети связи. Цифровые системы передачи в сочетании с цифровыми системами коммутации являются основой цифровой сети связи, в которой передача, транзит и коммутация сигналов осуществляются в цифровой форме. При этом параметры каналов практически не зависят от структуры сети, что обеспечивает возможность построения гибкой разветвленной сети, обладающей высокими надежностными и качественными показателями.

Высокие технико-экономические показатели. Передача и коммутация сигналов в цифровой форме позволяют реализовывать оборудование на единых аппаратных платформах. Это позволяет резко снижать трудоемкость изготовления оборудования, значительно снижать его стоимость, потребляемую энергию и габариты. Кроме того, существенно упрощается эксплуатация систем и повышается их надежность.

Требования к ЦСП определены в рекомендациях МСЭ-Т серии G.

Иерархии цифровых систем передачи

Структура первичной сети предопределяет объединение и разделение потоков передаваемой информации, поэтому используемые на ней системы передачи строятся по иерархическому принципу. Применительно к цифровым системам этот принцип заключается в том, что число каналов ЦСП, соответствующее данной ступени иерархии, больше числа каналов ЦСП предыдущей ступени в целое число раз.

Цифровая система передачи, соответствующая первой ступени иерархии, называется первичной; в этой ЦСП осуществляется прямое преобразование относительно небольшого числа первичных сигналов в первичный цифровой поток. Системы передачи второй ступени иерархии объединяют определенное число первичных потоков во вторичный цифровой поток и т.д.

В рекомендациях МСЭ-Т представлено два типа иерархий ЦСП: плезиохронная цифровая иерархия (PDH) и синхронная цифровая иерархия (SDH). Первичным сигналом для всех типов ЦСП является цифровой поток со скоростью передачи 64 кбит/с, называемый основном цифровом каналом (ОЦК). Для объединения сигналов ОЦК в групповые высокоскоростные цифровые сигналы используется рассмотренный ранее принцип

временного разделения каналов.

Для цифровых потоков PDH применяют соответствующие обозначения. Для североамериканской и японской PDH применяется обозначение T (иногда DS), для европейской PDH - Е. Цифровые потоки первого уровня обозначаются соответственно Т-1 и E-1, второго Т-2 и Е-2 и т.д.

К использованию на сетях связи РФ принята европейская PDH.

Табл. 0.1. Плезиохронная цифровая иерархия

Уровень

Европа

 

Северная Америка

Япония

 

иерархии

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Скорость

Коэфф.

Скорость

Коэфф.

Скорость

Коэфф.

 

Мбит/с

мульти-

Мбит/с

мульти-

Мбит/с

мульти-

 

 

плекс.

 

плекс.

 

плекс.

0

0,064

-

0,064

-

0,064

-

1

2,048

30

1,544

24

1,544

24

2

8,448

4

6,312

4

6,312

4

3

34,368

4

44,736

7

32,064

5

4

139,264

4

 

 

97,728

3

 

 

 

 

 

 

 

Наиболее современной технологией, используемой в настоящее время для построения сетей связи, является синхронная цифровая иерархия (СЦИ) (Synchronous Digital Hierarchy - SDH). Она обладает существенными преимуществами по сравнению с системами предшествующих поколений, позволяет полностью реализовать возможности волоконнооптических и радиорелейных линий, создавать гибкие, надежные, удобные для эксплуатации, контроля и управления сети, гарантируя высокое качество связи. Системы SDH обеспечивают скорости передачи от 155 Мбит/с и выше и могут транспортировать как сигналы существующих ЦСП, так и новых перспективных служб, в том числе широкополосных. Аппаратура SDH является программно управляемой и интегрирует в себе средства преобразования, передачи, оперативного переключения, контроля, управления.

Линейные сигналы SDH организованы в так называемые синхронные транспортные модули STM (Synchronous Transport Module) (Табл. 0.2). Первый из них - STM-1 -

соответствует скорости 155 Мбит/с. Каждый последующий имеет скорость в 4 раза большую, чем предыдущий, и образуется побайтным синхронным мультиплексированием. Уже стандартизированы STM-4 (622 Мбит/с) и STM-16 (2,5 Гбит/с), ожидается принятие и STM-64 (10 Гбит/с).

Табл. 0.2

Уровень

Модуль

Скорость передачи

 

 

 

 

 

 

1

STM-1

155 Мбит/с

 

 

 

4

STM-4

622 Мбит/с

 

 

 

16

STM-16

2,5 Гбит/с

 

 

 

 

 

 

Технология SDH, разработанная изначально для объединения и синхронной передачи по волоконно-оптическим линиям PDH-потоков, давно получила широкое распространение во всем мире. Такие достоинства, как большая пропускная способность трактов, гибкость, возможность динамически наращивать емкость сети без прерывания трафика, очень высокая степень надежности, обусловленная различными механизмами резервирования, возможность выделения (добавления) каналов в любой точке сети, удобство управления и администрирования, способствовали широкому внедрению SDH, в том числе и в сетях ОТС.

Однако бурное развитие информационных технологий и появление концепции NGN привело к резкому росту потребностей предприятий и отраслей в высокоскоростных сетях передачи данных, трафик которых обычно представляет собой пакеты переменной длины.

Основная сложность при передаче данных через сети SDH заключалась в том, что пакетную информацию необходимо упаковать в виртуальные контейнеры, предназначенные для передачи TDM-трафика. Оптимальным выходом из сложившейся

ситуации явилось создание концепции сетей SDH нового поколения, получившего название NGN SDH.

Преимущества технологии NG-SDH:

Одновременная передача TDM и Ethernet трафика.

Скорость до 10 Гбит/с

При совместном применении технологии SDH и спектрального уплотнения DWDM

увеличение пропускной способность трактов до 40 Гбит/с (теоретический предел скорости составляет несколько терабит в секунду (Тбит/с)).

Поддержка интерфейсов Fast Ethernet (FE) 10/100BaseT и GE 1000BaseX c автоматической регулировкой полосы пропускания линии (LCAS) и функцией виртуального сцепления контейнеров (VCAT).

Функция встроенного коммутатора второго уровня (switch layer 2) с поддержкой технологии виртуальных ЛВС (VLAN).

Поддержка QoS, RSTP.

Поддержка различных алгоритмов защиты передаваемого трафика позволяют организовать резервирование трактов STM-1/4/16/64 целиком или на уровне

виртуальных контейнеров внутри данных трактов.

Время защитного переключения с рабочего направления на резервное не более

50 мс.

Созданные на основе синхронных мультиплексоров уровней STM-1/4/16/64, мультисервисные транспортные платформы успешно решают задачу объединения трафика с временным разделением каналов (TDM) и трафика Ethernet с коммутацией пакетов в агрегатные потоки со скоростью от 155 Мбит/с до 10 Гбит/с, но и это далеко не предел. Применение технологии SDH и спектрального уплотнения WDM позволяет увеличить пропускную способность трактов до 40 Гбит/с при теоретическом пределе скорости в несколько терабит в секунду (Тбит/с).

Сохраняя все вышеперечисленные достоинства технологии SDH, NGN SDH предоставляет широкие возможности для построения интеллектуальных, самовосстанавливающихся сетей с качественно новым набором услуг. Рассмотрим подробнее новые возможности NGN на базе SDH. Для передачи пакетной информации и организации сети передачи данных (СПД) могут использоваться различные физические интерфейсы Ethernet. Стандартизованная технология GFP (Generic Frame Procedure) позволяет эффективно передавать Ethernet-трафик через сети SDH, упаковывая его в стандартные контейнеры уровня VC-12 и VC-3 . При этом ширина полосы пропускания для каждого канала Ethernet может быть динамически настроена. Данная особенность дает возможность предоставления услуги «полоса пропускания по запросу».

Для оптимизации услуг передачи данных используется механизм автоматической регулировки полосы пропускания линии (LCAS) и функция виртуального сцепления контейнеров (VCAT). При организации сквозных каналов Ethernet в кольцевых топологиях данные могут передаваться между узлами сети по разным независимым маршрутам. Данная задача особенно актуальна в крупных сетях, когда в агрегатном потоке не всегда имеется достаточное количество свободных виртуальных контейнеров. В случае пропадания потока на одном из направлений система автоматически перенастроит полосу пропускания без потери трафика.