Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ПосФХпроцЧ1.АтмосфХОС05.doc
Скачиваний:
645
Добавлен:
12.02.2015
Размер:
1.66 Mб
Скачать

5.3. Обрыв цепи в процессах, вызывающих разрушение озона

В рассмотренных выше цепных процессах «активные» частицы не расходуются. Каждая из «активных» частиц может многократно (до 107 раз) инициировать цикл разрушения озона, пока не будет выведена из зоны с максимальным содержанием озона, где ее при­сутствие наиболее опасно. Наличие процессов вывода (стока «ак­тивных» частиц), приводящих к обрыву реакционной цепи, имеет большое значение с точки зрения сохранения озонового слоя, по­скольку при отсутствии таких процессов весь озон в атмосфере был бы разрушен.

Гидроксидный и гидропероксидный радикалы, являющиеся «ак­тивными» частицами водородного цикла, могут вступать во взаи­модействие с различными компонентами атмосферного воздуха, но наиболее вероятными для стратосферы являются следующие реакции:

CH4 + OH  CH3 + H2O (54)

OH + HO2  H2O + O2 (55)

Возможным представляется и взаимодействие гидроксидного радикала с оксидом азота:

OH + NO  HNO2 (56)

Протекание этого процесса приводит к образованию временного резервуара для «активных» частиц водородного и азотного циклов, поскольку азотистая кислота сравнительно легко разлагается с образованием исходных «активных» частиц. Образование временных резервуаров в виде азотной и азотистой кислот является одной из особенностей азотного цикла. Окончательный обрыв цепи пре­вращений азотного цикла наступает в результате вывода этих вре­менных резервуаров из зоны с максимальной концентрацией озона в тропосферу.

Динамические процессы, приводящие к выводу «активных» ча­стиц в тропосферу, играют важную роль и в галогенных (хлорном и бромном) циклах разрушения озона. Помимо этого «активные» частицы этих циклов могут вступать в другие реакции, образуя временные резервуары.

Особое значение для обрыва цепи имеет реакция взаимодей­ствия оксида хлора и диоксида азота, которая приводит к обра­зованию сравнительно устойчивого и инертного по отношению к озону хлористого нитрозила:

ClO + NO2  ClONO2 (57)

Следует обратить внимание на то, что этот процесс интенси­фицируется при увеличении концентраций СlO и NO2 в атмосфе­ре и делает практически невозможным одновременное осуществле­ние азотного и хлорного циклов. Однако при определенных услови­ях этот временный резервуар для сбора «разрушителей» озонового слоя может представлять серьезную опасность для озона, как это происходит, например, при образовании «озоновой дыры» над Ан­тарктидой.

5.4. «Озоновая дыра» над Антарктидой

Понятие «озоновой дыры» связывают с уменьшением общего со­держания озона во всех областях атмосферы над определенной территорией. Наиболее часто это явление ассоциируется с уменьше­нием общего количества озона над Антарктидой, где такой процесс, протекающий с разной интенсивностью, в последние десятилетия наблюдается практически ежегодно и где он был зафиксирован впервые.

Над Антарктидой явление «озоновой дыры» носит ярко выраженный сезонный характер и проявляется лишь в весенний период. Например, весной 1987 г. наблюдалось уменьшение содержания озо­на с 300 е.Д. до 150-200 е.Д., а в некоторых областях до 100 е.Д., причем зона, в которой содержание озона составляло менее 200 е.Д., в этот период занимала примерно 40 млн км2. В последние годы все чаще появлялись сообщения о периодическом увеличении масштабов этого явления, область «озоновой дыры» уже достигала территории Австралии и Чили. Правительства и население этих стран вынуждены были принять специальные меры по борьбе с возможными последствиями. Так, во избежание дополнительного облучения ультрафиолетовыми лучами, которые при уменьшении содержания озона способны достигать поверхности Земли, в Австралии родите­ли стали одевать детей в закрытые купальники, а в Чили появились специальные рекомендации, связанные с поведением людей на от­крытом воздухе в дневные часы.

Теоретически процесс был описан в начале 70-х годов 20-го века, экспериментальные доказательства механизма образования «озоно­вой дыры» над Антарктидой получены в 80-х годах, а в 1995 г. уче­ные Ш. Роуланд (США), М. Молина (США), П. Крутцен (ФРГ), занимавшиеся этой проблемой, были удостоены Нобелевской пре­мии по химии. В соответствии с современными представлениями, причина образования «озоновой дыры» над Антарктидой являет­ся комплексной и связана как с совокупностью природных явлений (полярный вихрь), так и с антропогенным влиянием на состояние атмосферного воздуха. Так, систематическое увеличение поступле­ния хлорфторуглеводородов в атмосферу, наблюдавшееся во второй половине прошлого века, и специфика движения воздушных масс в стратосфере высоких широт привели к тому, что в период возникно­вения «озоновой дыры» концентрация озоноразрушающих веществ в воздухе над Антарктидой резко возрастала. Например, содержа­ние оксида хлора превышало соответствующие значения, регистритуемые в соседних областях стратосферы, в сотни раз. При таких высоких концентрациях СlO протекает процесс образования димеров (С1O)2.

Устойчивый антициклон, так называемый полярный вихрь, возникающий каждой зимой над Антарктидой, приводит к временному прекращению обмена воздухом с другими областями стратосферы и стоку озона в тропосферу. Поступление озона, образующегося в тропической или среднеширотной зонах стратосферы, в этот период прекращается. Однако возникающий дефицит озона в условиях полярной ночи не представляет опасно­сти для биоты.

Температура воздуха внутри вихря резко снижается до –70 или –80°С. В стратосфере появляются устойчивые аэрозольные образования – «серебристые» облака, состоящие из кристаллов льда и капель переохлажденной жидкости. В состав этих аэрозолей вхо­дят димеры оксида хлора (СlО)2, хлористый нитрозил (СlОNО2) и другие соединения азота (HNO3, HNO2). В зимний период эти со­единения, связанные с аэрозолями, не взаимодействуют с озоном. Весной циркумполярный вихрь распадается, и при повышении тем­пературы на поверхности кристаллов льда начинают протекать ге­терогенные химические процессы:

ClONO2 + H2O  HOCl + HNO3 (58)

или ClONO2 + HCl  Cl2 + HNO3 (59)

Образующиеся молекулы Cl2 и НОСl неустойчивы и в отличие от НСl и СlONO2 при появлении первых солнечных лучей распада­ются даже под воздействием видимого излучения:

Cl2 + hv  2Cl (60)

HOCl + hv  OH + Cl (61)

Таким образом, с наступлением весны в стратосфере над Ан­тарктидой появляется ряд озоноразрушающих веществ, и начина­ются цепные процессы разрушения озона на фоне природного дефи­цита озона, содержание которого не успевает восстановиться после окончания полярной ночи.

Особую роль в разрушении озона над Антарктидой играют димеры оксида хлора. Эти соединения неустойчивы и при воздействии излучения разлагаются:

(ClO)2 + hv  Cl + ClOO (62)

и далее СlOO  Сl + O2 (63)

Суммируя все уравнения реакций «димерного цикла» – (48, 62, 63), получим:

2O3 + hv  3O2 (64)

Эта суммарная реакция «димерного цикла» лишь внешне напо­минает процесс защитного действия озона, описываемый уравне­ниями (38) и (39), поскольку в данном случае разложение озона происходит под действием видимого излучения.

Таким образом, протекание гетерогенных реакций и «димерный цикл» резко интенсифицируют процесс разрушения озона над Антарктидой в весенний период и приводят к образованию «озоновой дыры». В дальнейшем кристаллики льда растают, гетерогенные про­цессы прекратятся, оксид хлора частично израсходуется, а частич­но свяжется с диоксидом азота в хлористый нитрозил. В основном благодаря динамическим процессам стратосферной циркуляции в полярную область поступит озон из других областей атмосферы, часть его будет синтезирована над Антарктидой, и «дыра» посте­пенно, в течение одного-двух месяцев закроется.

«Озоновые дыры», хотя и менее ярко выраженные, наблюдались в весенние месяцы и в северном полушарии.