Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
otvety.doc
Скачиваний:
83
Добавлен:
12.02.2015
Размер:
12.02 Mб
Скачать

22.Анализ двухфазного к.З. На землю: соотношения между токами и напряжениями отдельных фаз, векторные диаграммы токов и напряжений, комплексная схема замещения.

Для этого вида к.з. (см. рис.4.14) нужно иметь три схемы замещения – прямой обратной и нулевой последовательностей.

Будем по прежнему считать, что эти схемы замещения приведены к простейшему виду и нам известны .

Для этого вида к.з. уравнения связи с учетом граничных условий запишутся в следующем виде:

Согласно (4.3)-(4.5) и (4.29) имеем:

.

Из (4.29) следует, что:

; .

Так как ,

то

Подставляя выражение для из последнего выражения в (4.29), получим ;

Токи в фазах при двухфазном к.з. на землю будут:

. (4.32)

. (4.33)

Ток в земле при двухфазном к.з. на землю

(4.34)

Напряжения фаз

(4.35)

На рис. 4.15 представлены векторные диаграммы токов, напряжений и комплексная схема замещения при двухфазном коротком замыкании на землю в точке К.

Рис.4.15.

а – векторная диаграмма токов;

б – векторнафя диаграмма напряжений;

в – комплексная схема замещения

23.Анализ простого замыкания на землю: соотношения между токами и напряжениями отдельных фаз, векторные диаграммы токов и напряжений, комплексная схема замещения.

Пусть в начале распределительной трехфазной сети 6-35 кВ, присоединенной к источнику переменного тока произошло замыкание на землю фазы (рис.5.1,).

Рис.5.1.

Распределенные вдоль линии емкости каждой фазы относительно земли условно представлены сосредоточенными емкостями в конце линии.

Поступая в землю в месте замыкания, ток возвращается по неповрежденным фазам через их емкостные проводимости относительно земли.

Емкостная проводимость поврежденной фазы оказывается зашунтированной рассматриваемым замыканием, и ток в этой фазе справа от места замыкания отсутствует, если пренебречь током, который наводится токами двух других фаз на данном участке линии.

Характер векторных диаграмм токов слева и справа от места замыкания показан на том же рисунке.

В действительности емкостная проводимость линии распределена равномерно по ее длине, поэтому эпюра пространственного распределения тока нулевой последовательности каждой фазы вдоль линии выражается наклонной прямой (рис.5.1, ).

Граничные условия для простого замыкания на землю те же, что и для однофазного к.з. . Поэтому все выражения, полученные выше дляв равной мере относятся к случаю простого замыкания на землю.

Емкостные сопротивления элементов распределительной сети 6-35 кВ существенно превышают их индуктивные и активные сопротивления, что позволяет при расчете тока простого замыкания на землю пренебречь индуктивными и активными сопротивлениями и, следовательно, считать, что величина тока простого замыкания на землю практически не зависит от места замыкания.

Кроме того, так как ток простого замыкания на землю относительно мал (см. величины емкостных сопротивлений), при его определении можно считать, что напряжение источника сохраняется неизменным.

При принятых допущениях ток в месте простого (металлического) замыкания на землю будет:

(5.1)

где - результирующее емкостное сопротивление нулевой последовательности всех элементов (практически только линий и кабелей), электрически связанных с точкой замыкания;

- среднее фазное напряжение той ступени напряжения, где рассматривается простое замыкание на землю.

Как следует из (5.1) наибольшая величина тока простого замыкания на землю в три раза превышает емкостной ток на землю одной фазы в нормальных условиях.

Для приближенной оценки порядка величины тока простого замыкания на землю можно использовать соотношение:

А, (5.2)

где - среднее номинальное напряжение ступени, где рассматривается замыкание, кВ;

- коэффициент для воздушных линий;

- коэффициент для кабельных линий;

- суммарная длина, соответственно, воздушных и кабельных линий, электрически связанных с точкой простого замыкания на землю, км.

Для симметричных составляющих напряжений при принятых допущениях имеем:

(5.3)

(5.4)

(5.5)

На рис. 5.2. приведены векторные диаграммы токов и напряжений в месте простого металлического замыкания на землю фазы , которые построены при указанных выше допущениях.

Аналогично комплексной схеме при однофазном к.з. на землю может быть составлена такая же схема для случая простого металлического замыкания на землю (см. пример на рис.5.3).

а- исходная схема; б- комплексная схема замещения

Для этого, очевидно, нужно в схеме замещения нулевой последовательности разземлить все нейтрали, а в саму схему нулевой последовательности ввести еще соответствующие емкостные сопротивления.

Для ограничения тока простого замыкания на землю целесообразно нейтраль трансформатора заземлить через катушку с регулируемой величиной индуктивности (показано пунктиром на рис.5.3).

Индуктивность этой катушки следует выбирать таким образом, чтобы в цепи нулевой последовательности был обеспечен резонанс падений напряжения (на емкости и индуктивности), что приведет к , то есть к отсутствию тока простого замыкания.

Пренебрегая индуктивным сопротивлением трансформатора, найдем, что данное условие будет выполнено при

На практике такие катушки называются дугогасящими.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]