- •С. А. Рябов средства и методы управления качеством
- •1. Планирование качества и объекты управления
- •1.1. Качество как объект управления
- •1.2. Эволюция подходов к менеджменту качества
- •1.3. Актуальность проблемы качества
- •2. Качество продукции
- •2.1. Терминология в области качества
- •2.1.1. Терминоведение
- •2.1.2. Методология, использованная в терминологии
- •2.2. Продукция
- •2.2.1 Термины, относящиеся к оценке качества
- •2.2.2. Термины, относящиеся к организации в области качества
- •2.3. Содержание качества
- •3. Качество продукции и конкурентоспособность
- •3.1. Анализ влияния качества продукции на спрос и предложение
- •3.2. Критерии качества продукции и показатель успешности хозяйственной деятельности предприятия
- •3.3. Патентная чистота как нормативное условие обеспечение конкурентоспособности продукции
- •4. Основы квалиметрии
- •4.1. Показатели оценки качества продукции
- •4.2. Технико-экономические показатели качества продукции
- •4.3. Оценка технического уровня и качества продукции
- •4.4. Методы оценки уровня качества продукции
- •4.5. Классификация показателей качества продукции
- •5. Установление целей в области качества
- •5.1. Планирование качества
- •5.2. Программа качества
- •5.3. Функции качества
- •5.4. Основные методы управления качеством
- •5.4.1. Классификация методов управления качеством
- •5.4.2. Организационно- распорядительные методы управления качеством
- •5.4.3. Инженерно-технологические методы управления качеством
- •5.4.4. Экономические методы управления качеством
- •5.4.5. Социально-психологические методы управления качеством
- •5.5. Экспертные методы управления качеством
- •5.5.1. Сущность экспертных методов и организация работ по их использованию при управлении качеством
- •Метод сопоставления
- •Оценка согласованности экспертных данных
- •6. Метод принятия решений в управлении качеством
- •6.1. Метод полезности
- •6.2. Метод теории игр в управлении
- •6.3. Метод сетевого планирования и управления
- •7. Экономические аспекты качества
- •7.1. Технический контроль
- •7.2. Годная и дефектная продукция
- •7.3. Дефекты и их классификация
- •7.3.1. Дефекты металлов, их виды и возможные последствия
- •8. Неразрушающий контроль (нк) качества продукции
- •8.1. Виды и методы нк и их классификация
- •8.2. Контроль средств производства
- •9. Управление затратами на качество
- •9.1. Основные понятия о затратах на качество
- •9.2. Обзор исследований в области затрат на качество
- •9.3. Управление затратами
- •9.4. Модели затрат на качество
- •9.5. Сбор данных о затратах
- •9.6. Экономические аспекты менеджмента качества в стандартах серии исо 9000
- •9.7. Классификация, учет и анализ брака
- •10. Удовлетворение потребителей как результат управления качеством
- •10.1. Ценность продукта для потребителя
- •10.2. Методологический подход к оценке удовлетворения потребителя
- •10.3. Удовлетворение заказчика и тенденции к новым формам удовлетворенности потребителя
- •11. Удовлетворение внутреннего потребителя
- •11.1. Внутренний маркетинг
- •11.2. Внутрифирменное обучение
- •11.3. Основы корпоративной культуры
- •11.4. Функция управления техническими системами
- •11.5. Комплекс мероприятий по управлению качеством
- •12. Совмещенность конструкций машин
- •12.1. Характеристика конструкций машин
- •13. Нормативное руководство качеством при управлении проектами
- •13.1. Характеристики проекта
- •13.2. Качество в процессах управления проектами
- •14. Эффективность технических систем в эксплуатации
- •14.1. Управление совмещенностью свойств качества функционирования технических систем
- •14.1.1. Методика расчета допуска по показателям надежности
- •14.1.2. Обеспечение взаимозаменяемости при эксплуатации
- •14.1.3. Обеспечение надежности тс
- •14.2. Функция управления эффективностью тс
- •15. Методы обеспечения безотказности
- •15.1. Параметрические методы
- •15.2. Структурные методы
- •15.3. Подходы к планированию технического обслуживания систем
- •16. Поддержание качества технических систем при эксплуатации
- •16.1. Программа обеспечения надежности тс
- •16.2. Стандартизация в области надежности
- •16.2.1. Эволюция мэк/тк 56 «Надежность»
- •16.2.2. Концепция тк 119 Государственной системы стандартизации в области надежности
- •17. Методология управления технологической системой
- •17.1. Технологическая система как объект управления
- •17.2. Организационно-технические принципы управления технологическими системами
- •17.3. Экономические аспекты управления тс
- •18. Управление компонентами технологической системы
- •18.1. Управление технологической подготовкой производства
- •18.2. Обеспечение технологичности конструкции изделия
- •18.3. Управление технологическими процессами производства
- •18.4. Автоматизированное конструирование средств технологического оснащения в тпп
- •18.5. Система технического контроля
- •18.5.1. Основные термины и определения
- •18.5.2. Принципы технического контроля
- •18.5.3. Построение систем технического контроля
- •18.6. Статический контроль в производстве
- •18.6.1. Роль технологий производства в обеспечении качества
- •19. Система сертификации
- •19.1. Проведение сертификации
- •19.2. Международная сертификация
- •19.3. Сертификация в различных сферах
- •19.4. Методы мотивации
- •19.4.1. Факторы мотивации
- •19.5. Общие положения и организационно-методические направления улучшения обучения и повышения квалификации кадров по управлению качеством
- •19.6. Функции и структура программы обучения и повышения квалификации в области управления качеством
- •Основные принципы определения эффективности управления качеством
- •19.7. Основные источники эффектов и показатели расчета эффективности управления качеством
- •Список рекомендуемой литературы
15.2. Структурные методы
При повышении надежности технической системы изделия, состоящей из множества элементов, часто бывает недостаточным повысить надежность элементов, поэтому необходимо применять резервирование, которое позволяет уменьшить вероятность отказов на несколько порядков. Применяют постоянное резервирование с нагруженным резервом и резервирование замещением с ненагруженным резервом.
Резервирование наиболее широко применяют в радиоэлектронной аппаратуре, в которой резервные элементы имеют малые габаритные размеры и легко переключаются.
Можно выделить следующие особенности резервирования в машиностроении: в некоторых системах резервные агрегаты используют как рабочие в часы пик; в ряде систем резервирование обеспечивает сохранение работоспособности, но с пониженными показателями.
В транспортных машинах, в частности в автомобилях, применяют двойную или тройную систему тормозов. В пассажирских самолетах применяют 3 или 4 двигателя и несколько электрических машин. Выход из строя одной или даже нескольких машин, кроме последней, не приводит к аварии самолета. Число эскалаторов, паровых котлов выбирают с учетом возможности отказа и необходимости ремонта. На заводах стараются иметь два или более уникальных станков основного производства. Применение запасных деталей также можно рассматривать как вид резервирования.
Идею резервирования легко проиллюстрировать на примере систем электрических цепей с ключами (рис. 32).
Допустим, что система электрической цепи состоит из двух ключей. Замыкание цепи можно осуществить лишь тогда, когда оба ключа работают нормально. Если надежность каждого ключа при выполнении операции замыкания цепи равна R, то надежность системы, состоящей из двух ключей, равна R2 (см. риc. 32, a).
Рис. 32. К расчету резервирования элементов:
а – цепь из двух ключей: 1 – надежность системы равна R2; 2 – надежность системы равна R2(2 - R); б – сложная цепь; в – эквивалентная цепь
Допустим, что параллельно ключу S2 включается ключ S3 с надежностью R, замыкающий цепь, когда замыкали цепь и ключ S2. Теперь система будет функционировать нормально, если функционируют нормально ключи S2 или S3 или оба вместе.
Надежность комбинаций ключей S2 и S3
R(S2 + S3) = R(S2) + R(S3) ‑ R(S2)R(S3) = 2R ‑ R2.
Таким образом, надежность всей системы
R[S1(S2 + S3)] = R(2 ‑ R).
Поскольку всегда R < 1, то при добавлении третьего ключа надежность системы повышается. Дополнительный ключ является резервным, так как от него не зависит работа системы.
Как показал приведенный пример, при разработке систем и анализе их надежности весьма удобно применять логические символические обозначения. Рассмотрим сложную цепь, показанную на рис. 32, б.
Эта цепь окажется замкнутой и будет проводить ток в том случае, когда истинно следующее выражение:
А + (A + BC){α + [B(C + b)]}.
Это функция вида А + f(A, В, С). Легко показать, что логическую функцию вида f(xl, x2, ..., хп) можно разложить и записать как
f{x1, х2, ..., хп) = x1 f (I, х2, x3, ..., хп) + х1 f (φ, х2, х3, ..., хп),
где I и φ – соответственно универсальное и нулевое множества. Цепи I обозначают всегда замкнуто, а φ – всегда разомкнуто. Вместо х1 в функции f (I, х2, ..., хп) стоит I, а в функции f (φ, х2, ..., хп) – величина φ. Применив это разложение к записанной выше функции, получим
(A + BC)[α + B(C + b)] =
А(I + ВС)[φ + В(С + b)] + α(φ + ВС)[I + В(С + b)] =
= А(I + ВС)[В(С + b)] + α(ВС)[I + В(С + b)] =
АВ(С + b) + АВСВ(C + b) + αВС + αВСВ(С + b) = ВС.
Прибавив к полученному результату значение А, получим выражение для эквивалентной цепи (А + ВС). Схематически эквивалентная цепь показана на рис. 32, в.
Введение в систему резервирования повышает ее стоимость и часто сказывается на других ее параметрах, например на массе или размерах. В любой конкретной конструкции ценность дополнительной надежности должна сопоставляться с суммой соответствующих дополнительных затрат, дополнительной массой и т. д. Исследования такого рода называют оптимизацией качества конструкции. Чаще всего это просто вопрос минимизации общих затрат. Резервирование как один из конструктивных способов повышения надежности увеличивает начальные затраты, но снижает стоимость эксплуатации. Разумеется, в ряде случаев, например при создании пилотируемых космических аппаратов, могут играть роль не экономические, а другие соображения.