Добавил:
kiopkiopkiop18@yandex.ru Вовсе не секретарь, но почту проверяю Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
bilety_bkh_2.docx
Скачиваний:
22
Добавлен:
25.06.2022
Размер:
7.01 Mб
Скачать

Билет 22

1. Этапы катаболизма жирных кислот: реакции, ферменты. Энергетический эффект полного окисления с16:0. Регуляция процесса β-окисления вжк.

1. Жирные кислоты, как и глюкоза, являются основными «топливными молекулами». Большинство тканей, кроме нервной ткани, использует жирные кислоты как источник энергии.

Активация жирных кислот

Перед тем, как вступить в различные реакции, жирные кислоты должны быть активированы, т.е. связаны макроэргической связью с коферментом А:

RCOOH + HSKoA + АТФ → RCO ~ КоА + АМФ + PPi.

Реакцию катализирует фермент ацил-КоА син-тетаза. 

2. β-Окисление жирных кислот - это специфический путь катаболизма жирных кислот, продуктом которого является ацетил-КоА. β-Окисление жирных кислот и последующее за ним окисление ацетил-КоА в ЦТК служат источником энергии для синтеза АТФ.

β-Окисление жирных кислот, происходит в матриксе митохондрий, поэтому после активации жирные кислоты должны транспортироваться внутрь митохондрий

Рис. 8.18. Транспорт высших жирных кислот через мембраны митохондрий

Жирные кислоты с длинной углеводородной цепью переносятся через плотную внутреннюю мембрану митохондрий с помощью карнитина. Карнитин поступает с пищей или синтезируется из незаменимых аминокислот лизина и метионина.

В наружной мембране митохондрий находится фермент карнитинацилтрансфераза I (карнитин-пальмитоилтрансфераза I), катализирующий реакцию с образованием ацилкарнитина.

Образовавшийся ацилкарнитин проходит через межмембранное пространство к наружной стороне внутренней мембраны и транспортируется на внутреннюю поверхность внутренней мембраны митохондрий, где фермент карнитинацилтрансфераза II катализирует перенос ацила на внутримитохондриальный КоА . Таким образом, ацил-КоА становится доступным для ферментов β-окисления. На внутренней поверхности внутренней мембраны находится фермент карнитинацил трансфераза II, катализирующий обратный перенос ацила с карнитина на внутримитохондриальный КоА. После этого ацил-КоА включается в реакции β-окисления.

3. После того как ацил-КоА попадает в матрикс митохондрий, начинается процесс β-окисления, представляющий собой четыре последовательные реакции, которые заканчиваются укорочением жирной кислоты на два углеродных атома, отделяющиеся в форме ацетил-КоА (рис. 8.19).

Количество молекул АТФ, которые образуются при окислении жирной кислоты, можно рассчитать по формуле:

Рис. 8.19. Реакции β-окисления жирных кислот

2. Активные формы кислорода (афк). Биологическое действие афк. Ферментативные и неферментативные системы, генерирующие афк.

Кислород, необходимый организму для функционирования ЦПЭ и многих других реакций, является одновременно и токсическим веществом, если из него образуются так называемые активные формы.

К активным формам кислорода относят:

ОН - гидроксильный радикал;

 - супероксидный анион;

Н2О2 - пероксид водорода.

Активные формы кислорода образуются во многих клетках в результате последовательного одноэлектронного присоединения 4 электронов к 1 молекуле кислорода. Конечный продукт этих реакций - вода, но по ходу реакций образуются химически активные формы кислорода.

Образование АФК является результатом как стрессового, так и нормального метаболизма. Однако избыток АФК в клетках может быть причиной повреждений биополимеров и липидов растительных клеток. Крайними результатами нарушения балансового соотношения в образовании/обезвреживании АФК может быть некроз тканеЙ.

ЭФФЕКТ: Активные формы кислорода химически очень агрессивны: они повреждают белки, ДНК и главное, вызывают перекисное окисление липидов (ПОЛ) - самоподдерживающийся процесс, ведущий к тяжелому повреждению мембран. ФК участвуют в клеточном иммунитете и фагоцитозе.

АФК во многих клетках образуются в основном в ферментативных и неферментативных реакциях в результате последовательного присоединения е- к кислороду:

1) О2 + 1е- → О2 супероксидный анион-радикал.

2) О2 +1е- → О2-2 пероксидный анион, он быстро протонируется с образованием перекиси водорода О2-2 + 2Н+ → Н2О2

3) Н2О2 + 1е- → НО∙ + ОН- гидроксильный радикал, ОНпротонируется с образованием воды ОН+ Н+ → Н2О

4) ОН∙ + 1е- → Н2О

Ферментативные реакции образования АФК

Электроны, необходимые для образования АФК могут давать ЦПЭ. Утечка еиз ЦПЭ на кислород является основным путем образования АФК в большинстве клеток:

1.В цепи окислительного фосфорилирования Q принимая 1 епревращается в свободный радикал семихинон НQ, который при реоксигенации ишемических тканей может непосредственно взаимодействовать с кислородом, образуя супероксидный анион-радикал: HQ· + O2 → Q+ О2 + H+;

2.в монооксигеназных реакциях ес цитохрома Р450 переходит на кислород с образованием супероксидного анион-радикала, который иногда теряется с активного центра.

3.Аэробные дегидрогеназы (ФАД-зависимые оксидазы) переносят еи Н+ с субстрата на кислород с образованием перекиси водорода. Примеры таких оксидаз — оксидазы амино­кислот, супероксид дисмутаза, оксидазы, лока­лизованные в пероксисомах.

Задача.

У пациента с тяжёлой формой язвенной болезни двенадцатиперстной кишки (ЯБДК) при очередном обследовании обнаружена гормональноактивная опухоль – гастринома. Какова возможная связь наличия гастриномы с тяжёлым течением ЯБДК?

Наличие гастриномы является одним из отягчающих факторов течения ЯБДК. Т.к. гастринома (гормональноактивная опухоль), продуцирует гастрин (пептидный гормон), который является стимулятором секреции соляной кислоты в желудке. Повышенная секреция (гиперпродукция соляной кислоты) провоцируется язвообразование.

Соседние файлы в предмете Клиническая биохимия