
- •1 Средства измерений технологических параметров
- •1.1Средства измерения давления
- •1.1.1 Жидкостные средства измерений давления с гидростатическим уравновешиванием
- •1.1.1.1Поплавковые дифманометры.
- •1.1.1.2 Колокольные дифманометры.
- •1.1.2 Грузопоршневые манометры
- •1.1.3 Деформационные приборы для измерения давления
- •1.1.3.1 Трубчатые пружины.
- •1.1.3.2 Сильфоны.
- •1.1.3.3 Мембраны.
- •1.1.3.4 Гофры.
- •1.1.3.5 Эластичные мембраны.
- •1.1.4 Деформационные измерительные преобразователи давления, основанные на методе прямого преобразования
- •1.1.4.1 Индуктивные измерительные преобразователи давления.
- •Дифференциально-трансформаторные измерительные преобразователи давления.
- •1.1.4.3 Емкостные измерительные преобразователи давления.
- •Тензорезисторные измерительные преобразователи давления.
- •1.1.4.5 Пьезоэлектрические измерительные преобразователи давления.
- •1.1.5 Ионизационные манометры.
- •1.1.6 Тепловые манометры.
- •1.1.7 Методика измерения давления и разности давлений
- •1.2 Средства измерения уровня
- •1.2.1 Визуальные средства измерений уровня
- •1.2.2 Поплавковые средства измерений уровня
- •1.2.3 Байковые средства измерений уровня
- •1.2.4 Гидростатические средства измерений уровня
- •1.2.5 Электрические средства измерений уровня
- •1.2.5.1 Емкостные уровнемеры.
- •1.2.5.2 Кондуктометрические сигнализаторы уровня.
- •1.2.6 Акустические средства измерений уровня
- •1.3 Средства измерения расхода
- •1.3.1 Приборы, основанные на гидродинамических методах
- •1.3.1.1 Расходомеры с сужающими устройствами
- •Расходомеры с гидравлическим сопротивлением.
- •Расходомеры с напорным устройствам.
- •Расходомеры с напорными усилителями.
- •Расходомеры переменного уровня.
- •Расходомеры обтекания.
- •Расходомеры постоянного перепада давления.
- •Расходомеры с изменяющимся перепадом давления.
- •1.3.1.8 Расходомеры с поворотной лопастью.
- •Вихревые расходомеры.
- •1.3.1.10 Парциальные расходомеры
- •1.3.2 Приборы с непрерывно движущимся телом
- •1.3.2.2 Крыльчатые и турбинные тахометрические расходомеры.
- •1.3.2.3 Роторно – шаровые расходомеры.
- •1.3.2.4 Силовые расходомер.
- •1.3.2.5 Турбосиловые расходомеры.
- •1.3.2.6 Кориолисовые силовые расходомеры.
- •1.3.2.7 Вибрационные расходомеры.
- •1.3.2.8 Сравнение различных типов силовых расходомеров.
- •1.3.3 Приборы основанные на различных физических явлениях
- •1.3.3.1 Тепловые расходомеры.
- •1.3.3.2 Электромагнитные расходомеры.
- •1.3.3.3 Расходомер с электромагнитными преобразователями скорости потока.
- •1.3.3.4 Электромагнитные расходомеры для вещества с малой электропроводностью и особых разновидностей.
- •1.3.3.5 Ультразвуковые (акустические) расходомеры.
- •1.3.3.10 Акустические длинноволновые расходомеры.
- •1.3.3.11 Оптические расходомеры.
- •1.3.3.12 Ядерно – магнитные расходомеры.
- •1.3.3.13 Амплитудные расходомеры.
- •1.3.3.14 Частотные расходомеры.
- •1.3.3.15 Нутационные расходомеры
- •1.3.3.16 Меточные расходомеры
- •1.3.3.17 Ионизационные расходомеры
- •1.3.4 Приборы, основанные на особых методах
- •1.3.4.1 Корреляционные расходомеры
- •1.3.4.2 Меточные расходомеры
- •1.3.4.3 Концентрационные расходомеры
- •1.4 Средства измерения температуры
- •1.4.1Средства измерения температуры
- •1.4.2 Термометры расширения
- •1.4.3 Манометрические термометры
- •1.4.4 Термоэлектрические термометры
- •1.4.6 Пирометры излучения
- •1.5 Средства измерения плотности, вязкости и концентрации
- •1.5.1 Средства измерения плотности
- •1.5.2 Средства измерения вязкости жидкостей
- •1.5.3 Средства измерения концентрации
- •2 Вторичные аналоговые и цифровые приборы
- •Вторичные аналоговые приборы;
- •Вторичные цифровые приборы.
- •2.1 Вторичные аналоговые приборы
- •Милливольтметры и логометры;
- •Автоматические приборы следящего уравновешивания;
- •Узкопрофильные приборы.
- •2.1.1 Милливольтметры и логометры
- •2.1.2 Автоматические приборы следящего уравновешивания
- •2.1.3 Аналоговые приборы и устройства аскр
- •2.1.4 Приборы с дифференциально-трансформаторной измерительной схемой
- •2.1.4 Узкопрофильные приборы
- •2.2 Вторичные цифровые приборы
- •3 Исполнительные устройства
- •3.2. Плунжерные исполнительные устройства
- •3.2.1 Плунжерные исполнительные устройства
- •3.2. Бесплунжерные исполнительные устройства
- •3.3. Поворотные исполнительные устройства
- •3.4 Промышленная трубопроводная арматура
1.3.3.16 Меточные расходомеры
В меточных ядерно-магнитных расходомерах на каком-либо участке пути от поляризатора до приемной катушки «резонатора» производится создание метки в потоке путем изменения вектора намагниченности ядер. Существует много разновидностей ядерно-магнитных меточных расходомеров, различающихся как способом создания метки в потоке, так и методом измерения времени.
Чаще всего отметчиком жидкости служит нутационная катушка, находящаяся между поляризатором и «резонатором». Через нее импульсами пропускается переменный ток, создающий резонансное поле с индукцией. Обычно коэффициент нутации kн выбирают так, чтобы при kн = 0 деполяризовать ядра или же при kн = — 1 осуществить инверсию их намагниченности. В последнем случае отношение сигнала к шуму в два раза больше. Время tн прохождения жидкости через катушку нутации длиной lн, зависящее от расхода Q0, не должно влиять на коэффициент kн. Для этого надо иметь или очень короткие импульсы, чтобы их длительность τ была много меньше t при наибольшем расходе, или же наоборот, длительность τ должна быть достаточно большой, чтобы получить угол нутации θ > 5π. В последнем случае достигается kн = 0 вследствие расфазировки ядерной намагниченности в различных точках поперечного, сечения потока.
Рассмотрим принцип работы амплитудно – частотного расходомера. На рисунке 1.72 изображена схема амплитудно-частотного меточного расходомера, разработанного для измерения расхода воды, ацетона и других жидкостей в диапазоне от 0,08 до 1,4∙10-5 м3 /с.
Рисунок 1.72 - Схема амплитудного – частотного меточного ядерно – магнитного расходомера
Магнит поляризатора 1 из стали «магнико», полюсные наконечники из стали марки. В зазоре размером 10x10x200 мм, имеющем индукцию поля 0,6 Тл, расположена труба из немагнитной стали диаметром 10 мм. Полюсные наконечники 3 магнитной системы «резонатора» из железа «Армко». Индукция поля 0,13 Тл. К этим наконечникам прикреплен каркас из фторопласта, на котором расположены катушки модуляции поля 4 и приемно-воз-буждающая резонансное поле катушка 5. Между поляризатором и «резонатором» расположена катушка отметчика 2, питаемая резонансной частотой от генератора 9 через электронный ключ 8. Когда последний включен, жидкость из катушки отметчика 2 выходит деполяризованной. Пройдя за время t расстояние L между катушками 2 и 5, она прекращает в катушке 5 действие ЯМР и сигнал последнего пропадает. На выходе схемы выделения 6 возникает отрицательный перепад напряжения, отключающий через ключ 8 генератор 9 от катушки отметчика 2. Через время t поляризованная жидкость достигает катушки 5 и в последней возникает сигнал ЯМР, образующий на выходе схемы выделения положительный перепад напряжения, который вновь подключает генератор к катушке отметчика. Частота повторения цикла
F = l/2t = υ/2L,
где υ — скорость течения жидкости.
Эта частота с помощью схемы 7 преобразуется в постоянное напряжение, измеряемое указывающим или самопишущим прибором. Средняя квадратическая погрешность измерения расхода 1 процента.