Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

berezov1

.pdf
Скачиваний:
11
Добавлен:
07.02.2015
Размер:
38.98 Mб
Скачать

после легкого завтрака 3–4 г бензоата натрия), соединяя ее с глицином. Образовавшаяся гиппуровая кислота выводится с мочой. В норме при проведении пробы Квика–Пытеля с мочой выводится 65–85% принятого бензоата натрия. При поражении печени образование гиппуровой кислоты нарушается, поэтому количество последней в моче резко снижается.

Безазотистые органические компоненты мочи–это щавелевая, молочная и лимонная (цитрат), а также масляная, валериановая, янтарная (сукцинат),

β-оксимасляная, ацетоуксусная и другие кислоты. Общее содержание органических кислот в суточном количестве мочи обычно не превышает 1 г.

В норме содержание каждой из этих кислот в суточном объеме мочи исчисляется миллиграммами, поэтому количественно определять их очень сложно. При тех или иных состояниях выведение многих из них увеличивается и их проще обнаружить в моче. Например, при усиленной мышечной работе повышается уровень молочной кислоты, количество цитрата и сукцината увеличивается при алкалозе.

Неорганические (минеральные) компоненты мочи

Вмоче содержатся практически все минеральные вещества, которые входят

всостав крови и других тканей организма. Из 50–65 г сухого остатка,

образующегося при выпаривании суточного количества мочи, на долю неорганических компонентов приходится 15–25 г.

Ионы натрия и хлора. В норме около 90% принятых с пищей хлоридов выделяется с мочой (8–15 г NaCl в сутки). При ряде патологических состояний (хронический нефрит, диарея, острый суставной ревматизм и др.) выведение хлоридов с мочой может быть снижено. Максимальная концентрация ионов Na+ и Сl(в моче по 340 ммоль/л) может наблюдаться после введения в организм больших количеств гипертонического раствора.

Ионы калия, кальция и магния. Многие исследователи считают, что практически все количество ионов калия, которое имеется в клубочковом фильтрате, всасывается обратно из первичной мочи в проксимальном сегменте нефрона. В дистальном сегменте происходит секреция ионов калия, которая в основном связана с обменом между ионами калия и водорода. Следовательно, обеднение организма калием сопровождается выделением кислой мочи.

Ионы Са2+ и Mg2+ выводятся через почки в небольшом количестве (см. табл. 18.1). Принято считать, что с мочой выделяется лишь около 30% всего количества ионов Са2+ и Mg2+, подлежащего удалению из организма. Основная масса щелочноземельных металлов выводится с калом.

Бикарбонаты, фосфаты и сульфаты. Количество бикарбонатов в моче в значительной мере коррелирует с величиной рН мочи. При рН 5,6 с мочой выделяется 0,5 ммоль/л, при рН 6,6 – 6 ммоль/л, при рН 7,8 – 9,3 ммоль/л бикарбонатов. Уровень бикарбонатов повышается при алкалозе и понижается при ацидозе. Обычно с мочой выводится менее 50% всего количества выделяемых организмом фосфатов. При ацидозе выведение фосфатов с мочой возрастает. Повышается содержание фосфатов в моче при гиперфункции паращитовидных желез. Введение в организм витамина D снижает выделение фосфатов с мочой.

Серосодержащие аминокислоты: цистеин, цистин и метионин – являются источниками сульфатов мочи. Эти аминокислоты окисляются в тканях организма с образованием ионов серной кислоты. Общее содержание сульфатов в суточном количестве мочи обычно не превышает 1,8 г (в расчете на серу).

621

Аммиак. Как отмечалось, существует специальный механизм образования аммиака из глутамина при участии фермента глутаминазы, которая

вбольшом количестве содержится в почках. Аммиак выводится с мочой

ввиде аммонийных солей. Содержание последних в моче человека в определенной степени отражает кислотно-основное равновесие. При ацидозе их количество в моче увеличивается, а при алкалозе снижается. Содержание

аммонийных солей в моче может быть снижено при нарушении в почках процессов образования аммиака из глутамина.

Патологические компоненты мочи

Широко используемое понятие «патологические компоненты мочи» в известной мере условно, так как большинство соединений, рассматриваемых как патологические компоненты мочи, хотя и в небольшом количестве, но всегда присутствуют в нормальной моче. Иными словами, речь идет о веществах, которые в нормальной моче не встречаются в аналитически определяемых количествах. Это прежде всего белки, глюкоза, ацетоновые (кетоновые) тела, желчные и кровяные пигменты.

Белок. В нормальной моче человека содержится минимальное количество белка, присутствие которого не может быть доказано обыкновенными качественными пробами на наличие белка. При ряде заболеваний, особенно при болезнях почек, содержание белка в моче может резко возрасти (протеинурия). Источником белка мочи являются белки сыворотки крови, а также в какой-то степени белки почечной ткани.

Протеинурии делятся на две большие группы: почечные и внепочечные. При почечных протеинуриях белки (в основном белки плазмы крови) попадают в мочу вследствие органического повреждения нефрона, увеличения размеров пор почечного фильтра, а также в результате замедления тока крови в клубочках. Внепочечные протеинурии обусловлены поражением мочевых путей или предстательной железы.

Часто употребляемое в клинической практике название «альбуминурия» (при обнаружении в моче белка) неправильно, так как с мочой выделяются не только альбумины, но и глобулины. Например, при нефрозах общее содержание белка в моче может достигать 26 г/л, при этом концентрация альбуминов 12 г/л, а глобулинов – 14 г/л.

В моче человека можно обнаружить активность ряда ферментов: липазы, рибонуклеазы, ЛДГ, аминотрансфераз, урокиназы, фосфатаз, α-амила- зы, лейцинаминопептидазы и др. Основные трудности при определении активности ферментов мочи, кроме α-амилазы и некоторых других, заключаются в необходимости сгущения (концентрирования) мочи и предотвращении ингибирования ферментов в процессе этого сгущения.

Кровь. В моче кровь может быть обнаружена либо в форме красных кровяных клеток (гематурия), либо в виде растворенного кровяного пигмента (гемоглобинурия). Гематурии бывают почечные и внепочечные. Почечная гематурия–основной симптом острого нефрита. Внепочечная гематурия наблюдается при воспалительных процессах или травмах мочевых путей. Гемоглобинурии обычно связаны с гемолизом и гемоглобинемией. Принято считать, что гемоглобин появляется в моче после того, как содержание его в плазме превысит 1 г на 1 л. Гематурию диагностируют, как правило, с помощью цитологического исследования (исследование осадка мочи под микроскопом), а гемоглобинурию–химическим путем.

Глюкоза. Нормальная моча человека содержит минимальные количест-

622

ва глюкозы, которые не обнаруживаются обычными качественными пробами. При патологических состояниях содержание глюкозы в моче увеличивается (глюкозурия). Например, при сахарном диабете количество глюкозы, выделяемое с мочой, может достигать нескольких десятков граммов в сутки.

Иногда в моче обнаруживают и другие углеводы, в частности фруктозу, галактозу, пентозу. Ф р у к т о з у р и я наблюдается при врожденной недостаточности ферментов, превращающих фруктозу в глюкозу; встречаются также и врожденная пентозурия, и врожденная галактозурия .

Кетоновые (ацетоновые) тела. В нормальной моче эти соединения встречаются лишь в самых ничтожных количествах (не более 0,01 г в сутки). Они не обнаруживаются обычными качественными пробами (нитропруссидные пробы Легаля, Ланге и др.). При выделении больших количеств кетоновых тел качественные пробы становятся положительными. Это явление патологическое и называется кетонурией. Например, при сахарном диабете

ежедневно может выделяться до 150 г кетоновых

тел.

С мочой никогда не выделяется ацетон без

ацетоуксусной кислоты,

и наоборот. Обычные нитропруссидные пробы позволяют определить не только присутствие ацетона, но также и ацетоуксусной кислоты; β-оксимас- ляная кислота появляется в моче лишь при сильном увеличении количества кетоновых тел (сахарный диабет и др.).

Кетоновые тела выделяются с мочой не только при сахарном диабете, но и при голодании, исключении углеводов из пищи. Кетонурия наблюдается при заболеваниях, связанных с усиленным расходом углеводов: например, при тиреотоксикозе, кровоизлияниях в подпаутинные пространства, черепно-мозговых травмах. В раннем детском возрасте (продолжительные заболевания пищеварительного тракта (дизентерия, токсикозы) могут вызвать кетонемию и кетонурию в результате голода и истощения. Кетонурия нередко наблюдается при инфекционных заболеваниях: скарлатине, гриппе, туберкулезе, менингите. В этих случаях кетонурия не имеет диагностического значения и является вторичной.

Билирубин. В норме моча содержит минимальное количество билирубина, которое не может быть обнаружено обычными качественными пробами. Повышенное выделение билирубина, при котором обычные качественные пробы на наличие билирубина в моче становятся положительными, называется билирубинурией. Она встречается при закупорке желчного протока и заболевании паренхимы печени.

Выделение билирубина в мочу особенно сильно выражено при обтурационных желтухах. При застое желчи переполненные желчью канальцы травмируются и пропускают билирубин в кровяные капилляры. Если поражена паренхима печени, билирубин проникает в кровь через разрушенные печеночные клетки. Билирубинурия проявляется при уровне прямого билирубина в крови выше 3,4 мкмоль/л. Непрямой билирубин не может пройти через почечный фильтр. Это становится возможным при значительных поражениях почек.

Уробилин. В моче уробилин, точнее стеркобилин, присутствует всегда в незначительном количестве. Концентрация его резко возрастает при гемолитической и печеночной желтухах. Это связано с потерей печенью способности задерживать и разрушать мезобилиноген (уробилиноген), всосавшийся из кишечника. Напротив, отсутствие в моче уробилиногена при наличии желчных пигментов (билирубина) указывает на прекращение поступления желчи в кишечник вследствие закупорки желчного протока (см. главу 16).

623

Порфирины. В норме моча содержит лишь очень малые количества порфиринов I типа (до 300 мкг в суточном количестве). Однако выделение порфиринов может резко возрасти (в 10–12 раз) при заболеваниях печени и пернициозной анемии. При врожденной порфирии имеет место сверхпродукция порфиринов I типа (уропорфирина I и копропорфирина I). В этих случаях в суточном количестве мочи обнаруживается до 10 мг смеси этих порфиринов. При острой порфирии отмечается экскреция с мочой повышенных количеств уропорфирина III, копропорфирина III, а также порфобилиногена.

Мочевые камни

Мочевые камни–это плотные образования, встречающиеся в мочевыводящих путях. Мочевые камни могут располагаться в паренхиме почек, в чашках, лоханках, мочеточниках, мочевом пузыре и мочеиспускательном канале. Величина, форма и консистенция мочевых камней разнообразны. Мелкие мочевые камни имеют вид песчинок, большое количество которых образует так называемый мочевой песок. Более крупные мочевые камни обычно имеют округлую, овальную или, реже, корраловидную форму. Общим в структуре мочевых камней является наличие так называемого ядра, вокруг которого расположена различной толщины оболочка, или тело камня. Примерно треть или более таких камней состоит из Са3(РО4)2, MgNH4PO4, CaC2O4 или их смесей, т.е. это щавелевокислые (оксалатные), фосфорнокислые (фосфатные) или смешанные мочевые камни. Часто образование камней происходит в результате хронического защелачивания мочи в мочевом пузыре и почечных лоханках, которое является следствием бактериальной инфекции. Образованию камней способствуют избыточное выделение ионов Са2+, например, при гиперпаратиреоидозе, остеопорозе (в частности, вызванном неподвижностью) и необычайно высокое содержание Са2+ в пище. Кроме того, камни, состоящие из оксалата кальция, патогномоничны для о к с а л у р и и (наследственное нарушение метаболизма глицина, при котором практически весь синтезированный глицин окисляется через глиоксиловую кислоту до щавелевой кислоты).

У больных подагрой, как правило, встречаются камни, состоящие в основном из мочевой кислоты (C5H4N4O3), реже–из ее аммониевой или натриевой соли. Эти камни получили название мочекислых, или уратных. Отложение цистина (цистиновые камни) почти постоянно наблюдается у больных цистинурией.

Следует отметить, что изучение этиологических факторов, определение химического состава мочевых камней имеют важное значение для профилактики и лечения почечнокаменной болезни.

Глава 19

НЕРВНАЯ ТКАНЬ

Нервная ткань имеет общие черты, которые присущи клеткам любой ткани, а также специфические особенности, определяемые характером функций, выполняемых нервной системой в целостном организме. Эти особенности проявляются как в химическом составе, так и в характере метаболизма нервной ткани.

Нервная ткань состоит из трех клеточных элементов: нейронов (нервные клетки); нейроглии–системы клеток, непосредственно окружающих нервные клетки в головном и спинном мозге; мезенхимных элементов, включающих микроглию–глиальные макрофаги (клетки Ортеги).

Основная масса головного мозга представлена первыми двумя типами клеточных элементов. Нейроны сосредоточены в сером веществе (60–65% от вещества головного мозга), тогда как белое вещество ЦНС и периферические нервы состоят главным образом из элементов нейроглии и их производного – миелина.

СТРУКТУРА НЕЙРОНА

Нейрон имеет тело, многочисленные ветвящиеся короткие отростки–денд- риты и один длинный отросток–аксон, длина которого может достигать нескольких десятков сантиметров (рис. 19.1).

Объем цитоплазмы, содержащейся в отростках нервной клетки, может в несколько раз превышать ее количество в теле клетки. Тело нейрона окружено плазматической мембраной–плазмалеммой (рис. 19.2). В тесной связи с плазмолеммой * в теле нейрона и проксимальных отрезках дендритов находится так называемая подповерхностная мембранная структура. Это цистерны, которые расположены параллельно поверхности плазмолеммы и отделены от нее очень узкой светлой зоной. Предполагают, что цистерны играют важную роль в метаболизме нейрона. Основной ультраструктурой цитоплазмы нейрона является эндоплазматическая сеть–систе- ма ограниченных мембраной пузырьков, трубочек и уплощенных мешочков, или цистерн. Мембраны эндоплазматической сети связаны определенным образом с плазмолеммой и оболочкой ядра нейрона.

Гранулы, локализованные на мембранах эндоплазматической сети, а также свободно расположенные в цитоплазме, являются рибосомами.

Характерной структурной основой нервной клетки является базофильное вещество (субстанция Ниссля), состоящее из рибонуклеиновых кислот и белков. В цитоплазме также выявляется сеть тонких нитей–нейрофиб- рилл, которые в совокупности образуют густую сеть. Нейрофибриллы–это

* При возбуждении нейрона проницаемость плазматической мембраны изменяется.

625

Рис. 19.1. Строение нейрона (схема по Шмитту).

1 - дендриты; 2 - тело нейрона; 3 - аксон; 4- миелиновая оболочка; 5 - перехваты узла; 6- окончания.

структурное выражение правильной линейной ориентации белковых молекул.

Важный компонент цитоплазмы нейрона–пластинчатый комплекс (аппарат Гольджи), где сосредоточены главным образом липидные компоненты клетки. Одной из особенностей митохондрий, изолированных из нервных клеток, является то, что они содержат меньше ферментов, участвующих в процессах окисления жирных кислот и аминокислот, чем митохондрии из других тканей.

В ЦНС лизосомы обнаруживаются постоянно и выполняют те же функции, что и лизосомы других органов тканей.

Размер ядра нейрона колеблется от 3 до 18 мкм, достигая в крупных нейронах 1/4 величины их тела.

Строение миелина

Нервные волокна, образующиеся из аксонов нервных клеток, по своему строению могут быть разделены на 2 типа: миелиновые (мякотные) и безмиелиновые (бедные миелином). Проводниковая система соматической нервной системы, а также ЦНС относятся к первому типу, функционально более совершенному, обладающему способностью с высокой скоростью передавать нервные импульсы.

Миелиновое вещество–понятие морфологическое. По сути мие- лин–это система, образованная многократно наслаивающимися мембранами клеток нейроглии * вокруг нервных отростков (в периферических нервных стволах нейроглия представлена леммоцитами, или шванновскими клетками, а в белом веществе ЦНС – астроцитами).

По химическому составу миелиновое вещество является сложным белково-липидным комплексом.

На долю липидов приходится до 80% плотного осадка; 90% всех липидов миелина представлено холестерином, фосфолипидами и цереброзидами. Считают, что в липоидных слоях миелиновых оболочек молекулы различных липидов имеют строго определенное расположение (рис. 19.3).

* Тонкая структура нейроглии рассматривается в специальных руководствах, посвященных гистологии и морфологии нервной системы.

626

Рис. 19.2. Схематическое изображение ультратонкого строения нервной клетки по данным электронной микроскопии (по А.А. Маниной).

ВВ - впячивание ядерных мембран; ВН - вещество Ниссля; Г- пластинчатый комплекс (аппарат Гольджи); ГГ - гранулы гликогена; КГ - канальцы пластинчатого комплекса; КМ - кристы митохондрий; Л - лизосомы; ЛГ - липидные гранулы; М - митохондрии; ММ - мембрана митохондрий; МЭ - мембраны эндоплазматической сети; Н - нейропрофибриллы; П - полисомы; ПМ - плазматическая мембрана; ПРпресинаптическая мембрана; ПС - постсинаптическая мембрана; ПЯ - поры ядерной мембраны; Р- рибосомы; РНП - рибонуклеопротеиновые гранулы; С - синапс; СП - синаптические пузырьки; ЦЭ - цистерны эндоплазматической сети; ЭР - эндоплазматический ратикулум; Я - ядро; ЯМ - ядерная мембрана.

Рис. 19.3. Молекулярная организация миелиновой оболочки (по X. Хидену).

1 - аксон; 2- миелин; 3- ось волокна; 4- белок (наружные слои); 5- липиды; 6- белок (внутренний слой); 7 - холестерин; 8 - цереброзид; 9- сфингомиелин; 10фосфатидилсерин.

ХИМИЧЕСКИЙ СОСТАВ МОЗГА

Серое вещество головного мозга представлено в основном телами нейронов, а белое вещество–аксонами. В связи с этим указанные отделы мозга значительно различаются по своему химическому составу. Эти различия носят прежде всего количественный характер. Содержание воды в сером веществе головного мозга заметно больше, чем в белом (табл. 19.1). В сером веществе белки составляют половину плотных веществ, а в белом веществе–одну треть *. На долю липидов в белом веществе приходится более половины сухого остатка, в сером веществе–лишь около 30%.

Таблица 19.1. Химический состав

серого и белого

вещества головного мозга

человека (в процентах от массы сырой ткани)

 

 

 

 

 

 

 

Составные части

 

Серое

 

Белое

 

вещество

 

вещество

 

 

 

 

 

 

 

 

Вода

 

84

 

70

Сухой остаток

 

16

 

30

Белки

 

8

 

9

Липиды

 

5

 

17

Минеральные вещества

 

1

 

2

 

 

 

 

 

Белки

На долю белков приходится примерно 40% от сухой массы головного мозга. Мозговая ткань является трудным объектом для изучения белкового состава вследствие большого содержания липидов и наличия белково-ли- пидных комплексов.

А.Я. Данилевский впервые разделил белки мозговой ткани на растворимые в воде и солевых растворах белки и нерастворимые белки. Обширные исследования в этой области были проведены также А.В. Палладиным

* При пересчете на сырую массу ткани белки распределяются примерно поровну между серым (8%) и белым (9%) веществом головного мозга.

628

и сотр., которые разделили белки нервной ткани на 4 фракции: извлекаемые водой, 4,5% раствором КСl, 0,1% раствором NaOH и нерастворимый остаток. Установлено, что серое вещество богаче белками, растворимыми в воде, чем белое вещество,– соответственно 30 и 19%. Белое вещество, напротив, содержит гораздо больше (22%) нерастворимого белкового остатка, чем серое вещество (5%).

Вдальнейшем было выделено 5–10 фракций растворимых белков мозга, различающихся по своей электрофоретической подвижности.

Внастоящее время, сочетая методы экстракции буферными растворами, хроматографии на колонках с ДЭАЭ-целлюлозой и диск-электрофореза

вполиакриламидном геле, удалось выделить из ткани мозга около 100 различных растворимых белковых фракций.

Внервной ткани содержатся как простые, так и сложные белки. Простые белки–это альбумины (нейроальбумины), глобулины (нейроглобулины),

катионные белки (гистоны и др.) и опорные белки (нейросклеропротеины). Альбумины и глобулины по своим физико-химическим свойствам несколько отличаются от аналогичных белков сыворотки крови, поэтому их называют нейроальбуминами и нейроглобулинами. Количество нейроглобулинов в головном мозге относительно велико–в среднем 5% по отношению ко всем растворимым белкам. Нейроальбумины являются основным белковым компонентом фосфопротеинов нервной ткани, на их долю приходится основная масса растворимых белков (89–90%). В свободном состоянии нейроальбумины встречаются редко. В частности, они легко соединяются с липидами, нуклеиновыми кислотами, углеводами и другими

небелковыми компонентами.

Белки, которые в процессе электрофоретического разделения при рН 10,5–12,0 движутся к катоду, получили название катионных . Главнейшими представителями этой группы белков в нервной ткани являются гистоны, которые делятся на пять основных фракций в зависимости от содержания в их полипептидных цепях остатков лизина, аргинина и глицина.

Нейросклеропротеины можно охарактеризовать как структурно-опорные белки. Основные представители этих белков–нейроколлагены, нейроэластины, нейростромины и др. Они составляют примерно 8–10% от общего количества простых белков нервной ткани и локализованы в основном в белом веществе головного мозга и в периферической нервной системе.

Сложные белки нервной ткани представлены нуклеопротеинами, липопротеинами, протеолипидами, фосфопротеинами, гликопротеинами и т.д. В мозговой ткани содержатся в значительном количестве еще более сложные надмолекулярные образования, такие, как липонуклеопротеины, липогликопротеины и, возможно, липогликонуклеопротеиновые комплексы.

Нуклеопротеины – белки, которые принадлежат либо к дезоксирибонуклеопротеинам, либо к рибонуклеопротеинам. Часть этих белков из мозговой ткани извлекается водой, другая часть–солевыми средами, а третья – 0,1 М раствором щелочи.

Липопротеины составляют значительную часть водорастворимых белков мозговой ткани. Их липидный компонент–это в основном фосфоглицериды и холестерин.

Протеолипиды–это белково-липидные соединения, экстрагируемые органическими растворителями из ткани мозга. Отличаются от водорастворимых липопротеинов тем, что они нерастворимы в воде, но растворимы в смеси хлороформ–метанол. Белки, освобожденные от липидов, раство-

629

римы в воде, а также (благодаря высокому содержанию гидрофобных аминокислот) в смеси хлороформ–метанол. Наибольшее количество протеолипидов сосредоточено в миелине, в небольших количествах они входят в состав синаптических мембран и синаптических пузырьков.

Фосфопротеины в головном мозге содержатся в большем количестве, чем в других органах и тканях,– около 2% от общего количества всех сложных белков мозга. Фосфопротеины обнаружены в мембранах различных морфологических структур нервной ткани.

Гликопротеины представляют собой чрезвычайно гетерогенную группу белков. По количеству белка и углеводов, входящих в состав гликопротеинов, их можно разделить на две основные группы. Первая группа–это гликопротеины, содержащие от 5 до 40% углеводов и их производных; белковая часть состоит преимущественно из альбуминов и глобулинов. В гликопротеинах, составляющих вторую группу, содержится 40–85% углеводов, часто обнаруживается липидный компонент; по своему составу они могут быть отнесены к гликолипопротеинам.

Внервной ткани обнаружен ряд специфических белков, в частности белок S-100

ибелок 14-3-2. Белок S-100, или белок Мура, называют также кислым белком, так как он содержит большое количество остатков глутаминовой и аспарагиновой кислот. Этот белок сосредоточен в основном в нейроглии (85-90%), в нейронах его

не более 10-15% от общего количества белка в головном мозге. Установлено, что концентрация белка S-100 возрастает при обучении (тренировках) животных. Пока нет оснований считать, что белок S-100 непосредственно участвует в формировании и хранении памяти. Не исключено, что его участие в этих процессах опосредованно. Белок 14-3-2 также относится к кислым белкам. В отличие от белка S-100 он локализован в основном в нейронах; в нейроглиальных клетках его содержание невелико. Пока неясна роль белка 14-3-2 в выполнении специфических функций нервной ткани.

Ферменты. В мозговой ткани содержится большое количество ферментов, катализирующих обмен углеводов, липидов и белков. До сих пор в кристаллическом виде из ЦНС млекопитающих выделены лишь некоторые ферменты, в частности ацетилхолинэстераза и креатинкиназа.

Значительное количество ферментов в мозговой ткани находится в нескольких молекулярных формах (изоферменты): ЛДГ, альдолаза, креатинкиназа, гексокиназа, малатдегидрогеназа, глутаматдегидрогеназа, холинэстераза, кислая фосфатаза, моноаминоксидаза и др.

Липиды

Среди химических компонентов головного мозга особое место занимают липиды, высокое содержание и специфическая природа которых придают мозговой ткани характерные особенности. В группу липидов головного мозга входят фосфоглицериды, холестерин, сфингомиелины, цереброзиды, ганглиозиды и очень небольшое количество нейтрального жира (табл. 19.2). Многие липиды нервной ткани находятся в тесной взаимосвязи с белками, образуя сложные системы типа протеолипидов.

В сером веществе головного мозга фосфоглицериды составляют более 60% от всех липидов, а в белом веществе–около 40%. Напротив, в белом веществе содержание холестерина, сфингомиелинов и особенно цереброзидов больше, чем в сером веществе.

630

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]