Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

berezov1

.pdf
Скачиваний:
14
Добавлен:
07.02.2015
Размер:
38.98 Mб
Скачать

лечения воспалительных процессов и регуляции кровяного давления, а также для снятия приступов астмы и др.

Среди продуктов эндопероксидации вторичных ПГ необходимо отметить тромбоксаны и простациклины. Тромбоксаны образуются в тромбоцитах и после выхода в кровяное русло вызывают сужение кровеносных сосудов и агрегацию тромбоцитов.

Простациклины образуются в стенках кровеносных сосудов и являются сильными ингибиторами агрегации тромбоцитов. Таким образом, тромбоксаны и простациклины выступают как антагонисты. Поэтому соотношение тромбоксана и простациклина во многом определяет условия тромбообразования на поверхности эндотелия сосудов. Приводим формулы двух важнейших представителей этих соединений:

Тромбоксан А2

Простациклин (PGI2)

Лейкотриены. Это производные 20-углеродных полиненасыщенных (эйкозановых) кислот. Название «лейкотриены» происходит от двух слов: «лейкоциты» (впервые эти соединения были обнаружены в лейкоцитах) и «триены» (у всех представителей этого класса соединений из четырех ненасыщенных связей три являются конъюгированными). Лейкотриены синтезируются из эйкозановых кислот в лейкоцитах, клетках мастоцитомы, тромбоцитах и макрофагах по липоксигеназному пути в ответ на иммунологические и неиммунологические стимулы. Приводим структуру одного из лейкотриенов:

Лейкотриен А4

Лейкотриены прежде всего рассматриваются как медиаторы воспалительных реакций; они вызывают сокращение мышечной ткани бронхов в концентрациях, в 100–1000 раз меньших, чем гистамин; способствуют сокращению коронарных сосудов. В целом функция лейкотриенов в норме и при патологии во многом еще неясна.

391

БИОСИНТЕЗ ТРИГЛИЦЕРИДОВ *

Известно, что скорость биосинтеза жирных кислот во многом определяется скоростью образования триглицеридов и фосфолипидов, так как свободные жирные кислоты присутствуют в тканях и плазме крови в небольших количествах и в норме не накапливаются.

Синтез триглицеридов происходит из глицерина и жирных кислот (главным образом стеариновой, пальмитиновой и олеиновой). Путь биосинтеза триглицеридов в тканях протекает через образование α-глице- рофосфата (глицерол-3-фосфата) как промежуточного соединения.

В почках, а также в стенке кишечника, где активность фермента глицеролкиназы высока, глицерин фосфорилируется за счет АТФ с образованием глицерол-3-фосфата:

+ АТФ

Mg2+

+ АДФ

Глицеролкиназа

 

 

Глицерин

 

L-глицерол-3-фосфат

В жировой ткани и мышцах вследствие очень низкой активности глицеролкиназы образование глицерол-3-фосфата в основном связано с процессами гликолиза и гликогенолиза. Известно, что в процессе гликолитического распада глюкозы образуется дигидроксиацетонфосфат (см. главу 10). Последний в присутствии цитоплазматической глицерол-3-фос- фатдегидрогеназы способен превращаться в глицерол-3-фосфат:

+ НАД Н+Н+

Глицеролфосфат-

+ НАД+

 

дегидрогеназа

 

Диоксиацетон-

 

Глицерол-3-

фосфат

 

фосфат

Отмечено, что если содержание глюкозы в жировой ткани понижено (например, при голодании), то образуется лишь незначительное количество глицерол-3-фосфата и освободившиеся в ходе липолиза свободные жирные кислоты не могут быть использованы для ресинтеза триглицеридов, поэтому жирные кислоты покидают жировую ткань. Напротив, активация гликолиза в жировой ткани способствует накоплению в ней триглицеридов, а также входящих в их состав жирных кислот. В печени наблюдаются оба пути образования глицерол-3-фосфата.

Образовавшийся тем или иным путем глицерол-3-фосфат последовательно ацилируется двумя молекулами КоА-производного жирной кислоты (т.е. «активными» формами жирной кислоты–ацил-КоА). В результате образуется фосфатидная кислота (фосфатидат):

* Триглицеридыэто триацилглицеролы по международной номенклатуре.

392

R1-CO-S-KoA

R2-CO-S-KoA Глицеролфосфат-

2HS-КoA

ацилтрансфераза

 

Глицерол-3-фосфат

Фосфатидная кислота (фосфатидат)

Как отмечалось, ацилирование глицерол-3-фосфата протекает последовательно, т.е. в 2 этапа. Сначала глицерол-3-фосфат-ацилтрансфераза катализирует образование лизофосфатидата (1-ацилглицерол-3-фосфата, а затем 1-ацилглицерол-3-фосфат-ацилтрансфераза катализирует образование фосфатидата (1,2-диацилглицерол-3-фосфата) *.

Далее фосфатидная кислота гидролизуется фосфатидат-фосфогидро- лазой до 1,2-диглицерида (1,2-диацилглицерола):

+ H2O

Фосфатидатфосфо-

Рi

 

 

 

гидролаза

 

Фосфатидная кислота

 

1,2-Диглицерид

Затем 1,2-диглицерид ацилируется третьей молекулой ацил-КоА и превращается в триглицерид (триацилглицерол). Эта реакция катализируется диацилглицерол-ацилтрансферазой:

+ R3-CO-S-KoA Диглицерид-ацил-

HS-КoA

трансфераза

 

1,2-Диглицерид

Триглицерид

Синтез триглицеридов (триацилглицеролов) в тканях происходит с учетом двух путей образования глицерол-3-фосфата и возможности синтеза триглицеридов в стенке тонкой кишки из β-моноглицеридов, поступающих из полости кишечника в больших количествах после расщепления пищевых

* Фосфатидная кислота (фосфатидат) обнаружена во многих тканях, правда, в следовых количествах. Только в печени на ее долю приходится 1% от всех фосфолипидов.

393

АТФ

АДФ

НАД+

НАДН+ Н+

Глицеролкиназа

 

Гликолиз

Глицерол-3-фосфатде-

 

 

гидрогеназа

Глицерин

Глицерол-

 

Дигидрокси-

 

-3-фосфат

 

ацетонфосфат

Ацил-КоА

Глицерол-3-фосфат- ацилтрансфераза

КоА

1-Ацилглицерол-3- -фосфат (лизофосфатидат)

 

Ацил-КоА

 

 

1-Ацилглицерол-3-фосфат-

 

 

ацилтрансфераза

 

2-Моноацилглицерол

 

 

Ацил-КоА

КоА

 

Моноацил-

 

 

глицерол-

 

 

ацилтранс-

 

 

фераза

 

 

(кишечная)

 

 

КоА

 

 

1,2-Диацилглицерол-

 

фосфат (фосфатидат)

 

 

Н2О

 

 

Фосфатидат-фосфогидролаза

 

 

Рi

 

 

Ацил-КоА

КоА

 

Диацилглицерол-

 

-ацилтрансфераза

1,2-Диацилглицерол

Триацилглицерол

 

 

(триглицерид)

Рис. 11.6. Биосинтез триглицеридов (триацилглицеролов).

жиров. На рис. 11.6 представлены глицерофосфатный, дигидроксиацетонфосфатный и β-моноглицеридный (моноацилглицероловый) пути синтеза триглицеридов.

Установлено, что большинство ферментов, участвующих в биосинтезе триглицеридов, находятся в эндоплазматическом ретикулуме, и только некоторые, например глицерол-3-фосфат-ацилтрансфераза,– в митохондриях.

394

МЕТАБОЛИЗМ ФОСФОЛИПИДОВ

В отличие от триглицеридов и жирных кислот фосфолипиды не являются существенным энергетическим материалом. Фосфолипиды играют важную роль в структуре и функции клеточных мембран, активации мембранных и лизосомальных ферментов, в проведении нервных импульсов, свертывании крови, иммунологических реакциях, процессах клеточной пролиферации и регенерации тканей, в переносе электронов в цепи «дыхательных» ферментов. Особая роль фосфолипидам отводится в формировании липопротеидных комплексов.

Биосинтез фосфолипидов интенсивно происходит в печени, стенке кишечника, семенниках, яичниках, молочной железе и других тканях. Наиболее важные фосфолипиды синтезируются главным образом в эндоплазматической сети клетки.

Центральную роль в биосинтезе фосфолипидов играют 1,2-диглицериды (в синтезе фосфатидилхолинов и фосфатидилэтаноламинов), фосфатидная кислота (в синтезе фосфатидилинозитов) и сфингозин (в синтезе сфингомиелинов). Цитидинтрифосфат (ЦТФ) участвует в синтезе практически всех фосфолипидов. В качестве примера рассмотрим синтез отдельных представителей фосфолипидов.

Биосинтез фосфатидилэтаноламина. Первоначально этаноламин при участии соответствующей киназы фосфорилируется с образованием фосфоэтаноламина:

АТФ АДФ Mg2+

Этаноламинкиназа

Этаноламин

Фосфоэтаноламин

Затем фосфоэтаноламин взаимодействует с ЦТФ, в результате чего образуются цитидиндифосфатэтаноламин (ЦДФ-этаноламин) и пирофосфат (PPi):

+ ЦТФ

+ РРi

 

Этаноламинфосфат-

 

-цитидилтрансфераза

Фосфоэтаноламин

ЦДФ-этаноламин

395

В следующей реакции ЦДФ-этаноламин, взаимодействуя с 1,2-дигли- церидом, образующимся при дефосфорилировании фосфатидной кислоты, превращается в фосфатидилэтаноламин. Реакция катализируется ферментом этаноламинфосфотрансферазой:

ЦДФ-этаноламин + 1,2-диглицерид –> Фосфатидилэтаноламин + ЦМФ.

Биосинтез фосфатидилхолина (лецитина). Фосфатидилэтаноламин является предшественником фосфатидилхолина. В результате последовательного переноса трех метальных групп от трех молекул S-аденозилметионина (донор метальных групп, см. главу 6) к аминогруппе остатка этаноламина образуется фосфатидилхолин:

S-аденозил-

 

S-аденозил-

метионин

3СН3

гомоцистеин

 

 

Последовательное

метилирование

Фосфатидил

 

Фосфатидил

Фосфатидилэтаноламин

 

Фосфатидилхолин

Существует еще один путь синтеза фосфатидилхолина в клетках животных. В этом случае, как и при синтезе фосфатидилэтаноламина, используется ЦТФ в качестве переносчика, но уже не фосфоэтаноламина, а фосфохолина. На первом этапе синтеза свободный холин активируется под действием холинкиназы с образованием фосфохолина:

Холин + АТФ > Фосфохолин + АДФ.

Затем фосфохолин реагирует с ЦТФ, образуя цитидиндифосфатхолин (ЦДФ-холин):

Фосфохолин + ЦТФ > ЦДФ-холин + РРi.

В дальнейшем ЦДФ-холин взаимодействует с 1,2-диглицеридом, в результате чего образуется фосфатидилхолин:

ЦДФ-холин + 1,2-диглицерид > Фосфатидилхолин + ЦМФ.

Биосинтез фосфатидилсерина. У млекопитающих фосфатидилсерин образуется в реакции обмена этаноламина на серин следующим путем:

Фосфатидилэтаноламин + L-серин Са2+ Фосфатидилсерин + Этаноламин.

Существует и второй путь образования фосфатидилсерина, который связан с предварительным вовлечением фосфатидной кислоты в синтез фосфоглицеридов:

396

ЦТФ

РРi

 

Цитидин

Фосфатидная кислота

ЦДФ-диглицерид

Затем происходит перенос серина на фосфатидильный остаток с образованием фосфатидилсерина:

ЦДФ-диглицерид + L-серин > Фосфатидилсерин + ЦМФ.

Таким же путем образуется фосфатидилинозитол.

Биосинтез сфингомиелина. Интермедиатом в биосинтезе сфингомиелина является церамид (N-ацилсфингозин), который образуется при взаимодействии сфингозина с ацил-КоА. Сфингомиелин синтезируется в результате взаимодействия (реакции) церамида с ЦДФ-холином:

Сфингозин

Церамид

 

Сфингомиелин

Ацил-КоА

КоА

ЦДФ-холин

ЦМФ

Следует отметить, что различие в синтезе холин- и этаноламинсодержащих фосфолипидов, с одной стороны, и инозитсодержащих фосфоли- пидов–с другой, заключается в том, что в первом случае при участии ЦТФ образуется ЦДФ-холин или ЦДФ-этаноламин–реакционноспособные азотистые основания, а во втором случае при участии ЦТФ образуется ЦДФ-диглицерид–реакционноспособная форма диглицерида.

Распад и обновление фосфолипидов

Известно, что молекулы белков расщепляются в тканях полностью. Поэтому для молекулы белков можно определить время обновления. Фосфолипиды также активно распадаются в тканях, но для каждой части молекулы время обновления различно. Например, время обновления фосфатной группы отличается от времени обновления 1-ацильной группы, и обусловлено это наличием ферментов, вызывающих частичный гидролиз фосфолипидов, вслед за которым снова может происходить их синтез (рис. 11.7).

К сожалению, в настоящее время нет достаточно полных данных о фосфолипазном спектре той или иной ткани. Хорошо известно, что фосфолипаза A1 атакует эфирную связь фосфолипидов в положении 1. Фосфолипаза А2 катализирует гидролиз эфирной связи в положении 2 глицерофосфолипидов, в результате чего образуются свободная жирная кислота и лизофосфолипид (в случае фосфатидилхолина–лизолецитин), который реацилируется ацил-КоА при участии ацилтрансферазы.

Фосфолипаза С атакует эфирную связь в положении 3, что заканчивается образованием 1,2-диглицерида и фосфорильного основания.

Фосфолипаза D катализирует отщепление от фосфолипида азотистого основания. Долгое время считалось, что фосфолипаза D содержится только

397

Рис. 11.7. Гидролитическое расщепление фосфолипазами строго определенных связей фосфолипидов.

в растительных тканях. В последнее время ее удалось обнаружить в растворимой фракции мозга крысы, а затем в микросомах мозга и других органов, а в самое последнее время-в митохондриях печени крысы.

Нет ясности в отношении фосфолипазы В. Возможно, что это-смесь ферментов, обладающих свойствами фосфолипаз А1 и А2. Не исключено, что фосфолипаза В-фермент, действующий только на лизофосфолипид (например, лизолецитин), т.е. это лизофосфолипаза.

БИОСИНТЕЗ ХОЛЕСТЕРИНА

В 40-60-х годах нашего столетия К. Блох и сотр. в опытах с использованием ацетата, меченного 14С по метильной и карбоксильной группам, показали, что оба атома углерода уксусной кислоты включаются в холестерин печени приблизительно в одинаковых количествах. Кроме того, было доказано, что все атомы углерода холестерина происходят из ацетата.

В дальнейшем благодаря работам Ф. Линена, Г. Попьяка, Дж. Корнфорта, А.Н. Климова и других исследователей были выяснены основные детали ферментативного синтеза холестерина, насчитывающего более 35 энзиматических реакций. В синтезе холестерина можно выделить три основные стадии: I–превращение активного ацетата в мевалоновую кислоту, II–образование сквалена из мевалоновой кислоты, III–циклизация сквалена в холестерин.

Рассмотрим стадию превращения активного ацетата в мевалоновую кислоту. Начальным этапом синтеза мевалоновой кислоты из ацетил-КоА является образование ацетоацетил-КоА посредством обратимой тиолазной реакции:

СН3—СО—S-KoA + СН3—СО—S-KoA

Ацетил-КоА-ацетилтрансфераза

СН3—СО—СН2—СО—S-KoA + HS-KoA.

Ацетоацетил-КоА

Затем при последующей конденсации ацетоацетил-КоА с 3-й молекулой ацетил-КоА при участии гидроксиметилглутарил-КоА-синтазы (ГМГ-КоА- синтаза) образуется β-гидрокси-β-метилглутарил-КоА:

СН3—СО—СН2—СО—S-KoA+СН3—СО—S-KoA + Н2О

Ацетоацетил-КоА

Ацетил-КоА

Н2О

 

 

 

ГМГ-КоА-синтаза

398

β-Гидрокси-β-метилглутарил-КоА

Далее β-гидрокси-β-метилглутарил-КоА под действием регуляторного фермента НАДФ-зависимой гидроксиметилглутарил-КоА-редуктазы (ГМГ-КоА-редуктаза) в результате восстановления одной из карбоксильных групп и отщепления HS-KoA превращается в мевалоновую кислоту:

ГМГ-КоА-редуктаза

β-Гидрокси-β-метилглутарил-КоА

Мевалоновая кислота

ГМГ-КоА-редуктазная реакция–первая практически необратимая реакция в цепи биосинтеза холестерина. Она протекает со значительной потерей свободной энергии (около 33,6 кДж). Установлено, что данная реакция лимитирует скорость биосинтеза холестерина.

Наряду с классическим путем биосинтеза мевалоновой кислоты имеется второй путь, в котором в качестве промежуточного субстрата, по-видимому, образуется не β-гидрокси-β-метилглутарил-КоА, а β-гидрокси-β-метилглутарил-S-АПБ. Реакции этого пути идентичны начальным стадиям биосинтеза жирных кислот вплоть до образования ацетоацетил-S-АПБ. В образовании мевалоновой кислоты по этому пути принимает участие ацетил-КоА-карбоксилаза–фермент, осуществляющий превращение ацетил-КоА в малонил-КоА. Оптимальное соотношение малонил-КоА и ацетил-КоА для синтеза мевалоновой кислоты–2 молекулы ацетил-КоА на 1 молекулу малонил-КоА.

Участие малонил-КоА–основного субстрата биосинтеза жирных кислот в образовании мевалоновой кислоты и различных полиизопреноидов показано для ряда биологических объектов: печени голубя и крысы, молочной железы кролика, бесклеточных дрожжевых экстрактов. Этот путь биосинтеза мевалоновой кислоты отмечен преимущественно в цитозоле клеток печени. Существенную роль в образовании мевалоната в данном случае играет ГМГ-КоА-редуктаза, обнаруженная в растворимой фракции печени крысы и неидентичная микросомному ферменту по ряду кинетических и регуляторных свойств. Регуляция второго пути биосинтеза мевалоновой кислоты при ряде воздействий (голодание, кормление холестерином, введение поверхностно-активного вещества тритона WR-1339) отличается от ре-

399

гуляции первого пути, в котором принимает участие микросомная редуктаза. Эти данные свидетельствуют о существовании двух автономных систем биосинтеза мевалоновой кислоты. Физиологическая роль второго пути окончательно не изучена. Полагают, что он имеет определенное значение не только для синтеза веществ нестероидной природы, таких, как боковая цепь убихинона и уникального основания N6-(Δ2-изопентил)-аденозина некоторых тРНК, но и для биосинтеза стероидов (А.Н. Климов, Э.Д. Полякова).

На II

стадии синтеза холестерина мевалоновая кислота превращается

в сквален. Реакции II стадии начинаются с фосфорилирования мевалоновой

кислоты

с помощью АТФ. В

результате образуется 5-фосфорный эфир,

а затем 5-пирофосфорный эфир мевалоновой кислоты:

 

АТФ

АДФ

АТФ

АДФ

Мевалонат

5-Фосфомевалонат

5-Пирофосфомевалонат

5-пирофосфомевалоновая кислота в результате последующего фосфорилирования третичной гидроксильной группы образует нестабильный промежуточный продукт – 3-фосфо-5-пирофосфомевалоновую кислоту, которая, декарбоксилируясь и теряя остаток фосфорной кислоты, превращается в изопентенилпирофосфат. Последний изомеризуется в диметилаллилпирофосфат:

АТФ АДФ

5 -Пирофосфомевалонат

3-Фосфо-5-пирофосфо-

 

мевалонат

Диметилаллилпирофосфат

Изопентенилпирофосфат

400

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]