Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ответы -ТРАНСПОРТНАЯ ЭНЕРГЕТИКА.doc
Скачиваний:
1
Добавлен:
01.07.2025
Размер:
10.82 Mб
Скачать

10.1. Реостатное торможение (постоянный ток).

При реостатном торможении тяговый двигатель отключается от контактной сети и замыкается на тормозной реостат (резистор).

Переход тягового двигателя в генераторный режим происходит благодаря сохраняющемуся в нем потоку остаточного магнетизма. Для чего крайне важно , чтобы при переходе из двигательного режима в генераторный сохранилось направление тока в обмотках возбуждения. С этой целью переключают либо выводы якорной обмотки (Я, ЯЯ), либо выводы обмотки возбуждения. При малых нагрузках реостатному торможению свойственны жесткие характеристики, которые с увеличением нагрузки становятся более мягкими. Это объясняется тем, что скорость при реостатном торможении обратно пропорциональна магнитному потоку. При реостатном торможении наиболее эффективно регулировать скорость, изменяя сопротивление тормозного реостата. Чем больше это сопротивление, тем при данном токе, а следовательно тормозной силе, скорость должна быть выше. Тормозную силу возможно также регулировать за счёт изменения магнитного потока.

Наряду с ограничениями общими для тягового и тормозного режимов, при реостатном торможении имеет место дополнительное ограничение по максимально допустимому напряжению (UMAX) тягового двигателя. Опасность чрезмерного превышения напряжения связана с тем, что при реостатном торможении желательно реализовать большие тормозные силы при высоких скоростях движения. В этих условиях э.д.с. двигателя будет весьма значительна, т. к. он должен работать при больших магнитных полях и высоких скоростях, в отличие от тягового режима, где большим магнитным потокам соответствуют сравнительно низкие скорости. На электровозах и электропоездах постоянного тока обеспечить возможность работы ТЭД при значительном превышении напряжения – затруднительно, из – за их высокого номинального напряжения 1500 В. По этой причине на электровозах и электропоездах реостатное торможение в основном применяют для подтормаживания на спусках.

10.2. Реостатное торможение эпс однофазно-постоянного тока.

На ЭПС однофазно – постоянного тока при реостатном торможении устанавливают специальные тормозные резисторы и аппаратуру, регулирующую процесс торможения. Обмотки возбуждения ТЭД при этом питают от дополнительной обмотки тягового трансформатора, через тиристорный регулятор возбуждения. Каждая тяговая машина в режиме торможения работает на отдельный тормозной резистор с интенсивной принудительной вентиляцией. В случае исчезновения напряжения в контактной сети реостатное торможение становится невозможным.

Применение системы с последовательным возбуждением можно использовать лишь при регулировании в широких пределах сопротивления тормозных резисторов, что требует значительного количества коммутационной аппаратуры, разместить которую на электровозах переменного тока не представляется реальн

18. Характеристики и свойства рекуперативного торможения эпс постоянного тока. Основные схемы рекуперации.

Рекуперативным торможением на железнодорожном транспорте (в частности, на электровозах и электропоездах, оборудованных системой рекуперативного торможения) называется процесс преобразования кинетической энергии движения поезда в электрическую энергию тяговыми электродвигателями (ТЭД), работающими в режиме генераторов. Выработанная электрическая энергия передается в контактную сеть (в отличие от реостатного торможения, при котором выработанная электрическая энергия гасится на тормозных резисторах, то есть преобразовывается в тепло и рассеивается системой охлаждения).

Можно построить характеристики рекуперативного торможения, в случае если известна зависимость магнитного потока от тока рекуперации.

Рекуперативное торможение используется для подтормаживания состава в случаях, когда поезд идет по относительно некрутому уклону вниз, и использование воздушного тормоза нерационально. То есть, рекуперативное торможение используется для поддержания заданной скорости при движении поезда по спуску. Данный вид торможения дает ощутимую экономию энергии, так как выработанная электрическая энергия передается в контактную сеть и может быть использована другими локомотивами на данном участке контактной сети.

Рекуперативное торможение имеет следующие проблемы, которые требуют особого учета при разработке схемы электровоза для их решения:

а) тормозной момент пропорционален не скорости, а разности между скоростью и «скоростью нейтрали», зависящей от настройки системы управления электровоза и напряжения контактной сети. Так, при скорости ниже нейтрали ТЭДы будут тянуть, а не тормозить. Таким образом, при скорости вблизи нейтрали даже небольшие (в процентах) скачки напряжения сети сильно меняют упомянутую разность, а с ней и момент, и приводят к рывкам. Правильное проектирование схемы электровоза снижает этот фактор.

б) при параллельном включении якорей рекуперирующих ТЭД схема может получиться неустойчивой при боксовании и склонной к «сваливанию» в режим, когда один ТЭД работает в моторном режиме, питаясь от второго ТЭДа, работающего как генератор, что подавляет торможение. Решение: включение обмоток возбуждения крест-накрест от «чужого» ТЭД (см. схемы ВЛ8 и ВЛ10).

в) необходимы меры защиты против короткого замыкания контактной сети или на самом электровозе. Для этого используются быстродействующие контакторы, срабатывание которых вызывает в схеме переходный процесс, перемагничивающий обмотки возбуждения ТЭД и ликвидирующий таким образом остаточную намагниченность статора (возбуждения генерации от которой может быть вполне достаточно для перегрева или пожара в случае КЗ в сети).

В случае рекуперативного торможения электрическая энергия, возвращаемая в контактную сеть рекуперирующим электровозом, потребляется электровозами, находящимися с ним на одном участке и работающими в тяговом режиме. Если таких электровозов нет или необходимая им энергия меньше рекуперируемой, то так называемая избыточная энергия рекуперации через устанавливаемые на тяговой подстанции специальные устройства — инверторы, преобразующие постоянный ток в переменный трехфазный, направляется в энергосистему. На электрифицированных участках с очень интенсивным движением, где, как правило, почти вся рекуперируемая энергия потребляется электровозами или электропоездами, работающими в режиме тяги, иногда вместо инверторов на подстанциях устанавливают поглощающие резисторы. Они автоматически включаются при наличии избыточной энергии рекуперации.

Применение рекуперации дает большой эффект. На отдельных участках с крутыми спусками может быть сэкономлено до 20% электрической энергии, затрачиваемой на тягу поездов. Преимущества рекуперативного торможения этим не ограничиваются. Когда поезд следует по крутому спуску, для того чтобы его скорость не превысила допустимую, обычно локомотив и состав периодически подтормаживают пневматическими тормозами. В результате скорость движения поезда уменьшается, а затем вновь возрастает, т. е. средняя скорость его на спуске ниже допустимой. Кроме того, все время притормаживать поезд нельзя, так как истощается пневматическая тормозная система, снижается коэффициент трения колодок вследствие их нагревания. При рекуперативном торможении можно обеспечить на спуске постоянную скорость, близкую к допустимой, зависящей от состояния пути, конструкции электровозов, вагонов, контактной сети. Кроме того, к контактной сети при рекуперации подключается дополнительный источник энергии, напряжение в ней повышается, и другие электровозы на этом участке, следующие по подъему или площадке, могут развивать более высокую скорость.

Благодаря электрическому торможению также значительно уменьшается износ тормозных колодок и колес подвижного состава, в результате чего намного снижаются расход металла и затраты на ремонт колесных пар.

Системы рекуперативного торможения должны обеспечивать постоянный ток рекуперации в тяговых двигателях и тормозной момент в условиях непрерывного изменения напряжения в контактной сети. Напряжение в контактной сети колеблется хотя бы потому, что от нее в разные периоды питается различное количество электровозов и электропоездов, да и потребляемая ими мощность меняется в очень широких пределах. При эти возможны резкие изменения тока pрекуперации. Этот ток определяется разностью суммарной э. д. с. последовательно соединенных двигателей и напряжения в контактной сети, деленного на сопротивление их обмоток. Общее сопротивление обмоток двигателей, даже соединенных последовательно, как отмечалось выше, мало. Поэтому даже относительно небольшие резкие изменения разности суммарной э. д. с. и напряжения сети вызывают большие броски тока.

Предположим, что в контактной сети по какой-либо причине напряжение увеличилось. Тогда ток в якоре тягового двигателя, работающего в режиме генератора, может изменить направление, и двигатель автоматически перейдет в тяговый режим. Вместо того чтобы тормозить поезд, двигатель будет разгонять его. При понижении напряжения, наоборот, ток рекуперации резко увеличится, тормозной момент возрастет и в поезде возникнут сильные толчки вследствие набегания хвостовых вагонов.

Следовательно, при допустимых нормами колебаниях напряжения в контактной сети в системе рекуперативного торможения должен автоматически поддерживаться примерно один и тот же ток рекуперации, а значит, и тормозной момент, установленный в зависимости от условий движения поезда.

Напомним, что для перехода двигателя из тягового режима в генераторный необходимо, чтобы э. д. с. в обмотке якоря стала больше приложенного напряжения, т. е. напряжения в контактной сети. Но двигатель с последовательным возбуждением не может перейти в режим генератора, потому что магнитный поток возбуждения в нем резко снижается при уменьшении нагрузки, а э. д. с. в обмотке якоря не может стать выше напряжения в сети.

Для того чтобы осуществить рекуперативное торможение, необходимо обмотки возбуждения отключить от обмоток якорей и питать их от постороннего источника энергии, например от специального генератора возбудителя

Якорь возбудителя приводится во вращение двигателем Д. В этом случае можно установить в обмотках возбуждения такой ток, при котором э. д. с. в обмотках якорей тяговых двигателей станет больше напряжения в контактной сети. Если скорость движения поезда уменьшится, то может снизиться э. д .с. двигателей, работающих в режиме генераторов. Однако достаточно увеличить ток возбуждения Iв чтобы поддержать необходимую э. д. с, а значит, ток и тормозной момент, создаваемый двигателями. Для этого регулируют ток Iв в независимой обмотке возбуждения возбудителя В, изменяя сопротивление реостата П..

Схемы, построенные по такому принципу, можно использовать для рекуперативного торможения нескольких параллельно включенных двигателей. При этом в каждой цепи двигателя имеется стабилизирующий резистор R т, а обмотки возбуждения подключены к общему возбудителю В. Стабилизирующие резисторы обеспечивают электрическую устойчивость системы в режиме рекуперативного торможения, но они жесоздают и присущий схеме недостаток: значительные потери энергии в этих резисторах и необходимость повышенной мощности возбудителя для их компенсации.

Предложено несколько схем, свободных от этого недостатка. Так, на восьмиосных электровозах для осуществления рекуперативного торможения используют противовозбуждение возбудителя (рис. 47, б). В этом случае обмотки возбуждения ОВ тяговых двигателей подключают к якорю возбудителя В. Возбудитель имеет две обмотки: независимую ОНВ, напряжение в которую подается от постороннего источника энергии, и обмотку противовозбуждения ОПВ, включенную последовательно в цепь тока рекуперации. Магнитные потоки обеих обмоток, создаваемые соответственно токами Iонв и Iр, направлены встречно. При увеличении тока рекуперации в случае уменьшения напряжения в контактной сети ток обмотки противовозбуждения снижает результирующий магнитный поток возбуждения возбудителя. Соответственно уменьшаются возбуждение генератора (тягового двигателя) и его э. д. с. Когда напряжение в контактной сети повышается, ток рекуперации уменьшается и все процессы в схеме проходят в обратном порядке. При рекуперативном торможении с использованием противовозбуждения обмотки возбуждения двигателей включают так же, как и при реостатном торможении, по циклической схеме. Это позволяет выравнивать токи в параллельных цепях якорей двигателей в случае повышения э. д. с. в одной из них.

В зависимости от скорости движения поезда рекуперативное торможение применяют на трех соединениях якорей тяговых двигателей. Если скорость движения большая, используют параллельное соединение. В случае малой скорости движения получить большую э. д. с. машин невозможно, и тогда применяют последовательно-параллельное или последовательное соединение.

Необходимые переключения в силовой цепи для перехода в рекуперативный режим производят тормозным переключателем.

Рекуперативное торможение с противовозбуждением.

Здесь возбудитель снабжен двумя обмотками: НВ – обмотка независимого возбуждения; ПВ – обмотка противовозбуждения, по которой протекает ток рекуперации. Вследствие размагничивающего действия обмотки противовозбуждения, э.д.с. возбудителя и м.д.с. тяговой машины уменьшаются с ростом тока рекуперации.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]