- •2. Элементы режимов резания при точении
- •3. Виды резцов и их геометрические параметры
- •4. Физические основы процесса резания металлов
- •5. Силы резания при точении, определение их величин и мощности резания
- •6. Качество обработанной поверхности
- •7. Инструментальные материалы, их обозначение, марки, расшифровка, область применения
- •8. Классификация металлорежущих станков
- •9. Механизмы бесступенчатого регулирования скоростей и их схемы
- •10. Механизмы ступенчатого регулирования скоростей и их схемы
- •11. Механизмы прямолинейного движения и их схемы
- •12. Механизмы прерывистого движения и их схемы
- •13. Токарные станки, виды обработки на них и оснастка к ним
- •14. Настройка делительных кинематических цепей на токарных станках при резьбонарезании (разобрать пример)
- •15. Элементы режимов резания при сверлении
- •16. Сверлильные станки, виды обработки на них и оснастка к ним
- •17. Элементы режимов резания при фрезеровании
- •18. Фрезерные станки, виды обработки на них, оснастка к ним
- •19. Назначение и устройство делительной головки удг-200, способы ее настройки для нарезания зубчатых колес (разобрать пример)
- •20. Абразивные материалы
- •21. Основные виды слесарной обработки
- •22. Опиливание металла (инструмент назначения)
- •23. Рубка металла (инструмент назначения)
- •24. Правка и гибка металла
- •25. Клепка металла (типы заклепок, виды швов)
- •26. Нарезание резьбы внутренней и наружной
- •27. Разметка (линейная, плоскостная, объемная)
- •28. Резка металла (ножницами, ножовкой и труборезом)
- •29. Зенкерование, зенкование и развертывание отверстий)
- •30. Пайка металла (общие сведения пайки мягкими и твердыми припоями)
- •31. Виды шлифования и режимы резания
- •32. Отделочные методы абразивной обработки (притирка, хонингование, полирование)
- •33. Износ режущих инструментов. Влияние сож на процесс резания
- •34. Силы резания, крутящий момент и мощность при сверлении
- •35 Строгальные, долбежные и протяжные станки и работа на них
6. Качество обработанной поверхности
Качество поверхности – совокупность физико-механических свойств, геометрических показателей поверхностного слоя как результат технологического воздействия на данную поверхность.
Физико-механические свойства поверхностного слоя детали характеризуются глубиной и степенью упрочнения (наклепа), а также значениями остаточных напряжений и глубиной их проникновения.
Геометрические параметры обработанной поверхности характеризуются следующими отклонениями от геометрической формы – макрогеометрией (бочкообразность, конусность, овальность, неплоскостность) и микрогеометрией (шероховатость и волнистость).
Погрешности геометрической формы должны укладываться в допуск на размер с заданной точностью изготовления детали.
Точность обработки – это соответствие формы, размеров и положения обработанной поверхности требованиям чертежа и технических условий.
Точность размеров обработанной детали определяется допусками, т.е. разностью между наибольшим и наименьшим предельными размерами, которые на чертежах проставляются соответствующими обозначениями согласно существующим квалитетам. ЕСДП СЭВ для всех диапазонов размеров устанавливает 19 квалитетов.
Одной из основных характеристик качества поверхности деталей является ее шероховатость.
Качество обработанной поверхности определяется шероховатостью и волнистостью, а также физико-механическими характеристиками поверхностного слоя.
Под шероховатостью поверхности понимают совокупность и характер микронеровностей (с относительно малыми шагами) на данной поверхности, рассматриваемых на определенной (базовой) длине.
Волнистость (волнообразное искривление поверхности) есть совокупность более или менее регулярно повторяющихся и близких по размеру чередующихся возвышений и впадин, причем расстояние между соседними возвышенностями (впадинами) превышает базовую длину при изменении шероховатости поверхности, а также высоту возвышений. Волнистость занимает промежуточное положение между отклонениями геометрической формы (конусообразность, овальность и т. п.) и шероховатостью поверхности. При больших значениях шага и высоты волн волнистость может рассматриваться как погрешность геометрической формы (например, огранка).
Волнистость в настоящее время не нормирована. Согласно рекомендациям, волнистость определяется:
а) высотой волнистости (Rz ) ;
б) средним шагом волнистости Sm .
Отклонение формы Волнистость Шероховатость
S/R>1000; S/R=50…1000 S/R<50
Физико-механические свойства поверхностного слоя определяются структурой, твердостью, остаточными напряжениями, характером изменения свойств по глубине и др.
Физические свойства поверхностного слоя отличаются от физических свойств основного металла. Это объясняется тем, что при обработке резанием поверхностный слой подвергается воздействию высоких температур и значительных сил, которые вызывают упругие и пластические деформации. Поверхностный слой детали после обработки состоит из пленки адсорбированных из атмосферы газов, слоя окислов, нитридов, обезуглероженного слоя и слоя деформированных зерен. Толщина пленки адсорбированных газов составляет 2...ЗА (А=10-7мм). Толщина дефектного слоя составляет при предварительном шлифовании 30...50 мкм, а при тонком шлифовании 10 мкм. Таким образом, даже при такой чистовой операции, как тонкое шлифование, поверхностный слой толщиной более 10 мкм отличается от основного металла.
Шероховатость и волнистость поверхности оказывают весьма значительное влияние на такие важные эксплуатационные свойства деталей машин, как износостойкость, усталостная прочность, контактная жесткость, антикоррозионная стойкость, стабильность посадок и др. Вследствие шероховатости и волнистости поверхностей сопрягаемых деталей фактическая площадь их контакта становится значительно меньше номинальной, что ведет к увеличению удельных нагрузок, нарушению масляной пленки, разрушению и деформированию выступающих неровностей. Поэтому грубые поверхности имеют низкую износостойкость. Наличие микронеровностей вызывает концентрацию напряжений во впадинах гребешков, что приводит к появлению трещин и снижает прочность деталей (особенно деталей, работающих при знакопеременных нагрузках).
Величина шероховатости поверхности оказывает значительное влияние на коррозионную стойкость деталей в атмосферных условиях. Очаги коррозии образуются в первую очередь во впадинах. Чем чище обработана поверхность, тем выше ее коррозионная стойкость. Правда, при работе деталей в агрессивных средах шероховатость поверхности уже мало влияет на их коррозионную стойкость, так как сама среда оказывает в этом случае наибольшее влияние. Микронеровности (шероховатости) оказывают важное влияние и на стабильность подвижных и неподвижных посадок. За счет износа трущихся поверхностей происходит увеличение зазоров и изменение посадок. Это может произойти не только в течение длительной эксплуатации, но и в начальный период приработки трущихся деталей, когда происходит особенно интенсивный износ и деформирование микронеровностей сопряженных поверхностей (до 65...70 % их высоты). Надежность неподвижных посадок выше при более низкой шероховатости сопрягаемых поверхностей. Кроме того, шероховатость поверхности оказывает влияние на условия смазки, герметичность сальников и другие характеристики сопряжений.
Следует, однако, иметь в виду, что чрезмерные требования к шероховатости поверхностей деталей приводят к усложнению и удорожанию технологии изготовления деталей и являются бесполезными с точки зрения улучшения эксплуатационных свойств деталей. Поэтому детали изготовляют только с такой шероховатостью поверхности, которая наиболее рациональна в условиях работы детали в изделии.
Шероховатость поверхности, согласно ГОСТ 2789—73, оценивается либо средним арифметическим отклонением профиля Ra либо высотой неровностей профиля Rz по десяти точкам, взятым в микрометрах.
