- •2. Элементы режимов резания при точении
- •3. Виды резцов и их геометрические параметры
- •4. Физические основы процесса резания металлов
- •5. Силы резания при точении, определение их величин и мощности резания
- •6. Качество обработанной поверхности
- •7. Инструментальные материалы, их обозначение, марки, расшифровка, область применения
- •8. Классификация металлорежущих станков
- •9. Механизмы бесступенчатого регулирования скоростей и их схемы
- •10. Механизмы ступенчатого регулирования скоростей и их схемы
- •11. Механизмы прямолинейного движения и их схемы
- •12. Механизмы прерывистого движения и их схемы
- •13. Токарные станки, виды обработки на них и оснастка к ним
- •14. Настройка делительных кинематических цепей на токарных станках при резьбонарезании (разобрать пример)
- •15. Элементы режимов резания при сверлении
- •16. Сверлильные станки, виды обработки на них и оснастка к ним
- •17. Элементы режимов резания при фрезеровании
- •18. Фрезерные станки, виды обработки на них, оснастка к ним
- •19. Назначение и устройство делительной головки удг-200, способы ее настройки для нарезания зубчатых колес (разобрать пример)
- •20. Абразивные материалы
- •21. Основные виды слесарной обработки
- •22. Опиливание металла (инструмент назначения)
- •23. Рубка металла (инструмент назначения)
- •24. Правка и гибка металла
- •25. Клепка металла (типы заклепок, виды швов)
- •26. Нарезание резьбы внутренней и наружной
- •27. Разметка (линейная, плоскостная, объемная)
- •28. Резка металла (ножницами, ножовкой и труборезом)
- •29. Зенкерование, зенкование и развертывание отверстий)
- •30. Пайка металла (общие сведения пайки мягкими и твердыми припоями)
- •31. Виды шлифования и режимы резания
- •32. Отделочные методы абразивной обработки (притирка, хонингование, полирование)
- •33. Износ режущих инструментов. Влияние сож на процесс резания
- •34. Силы резания, крутящий момент и мощность при сверлении
- •35 Строгальные, долбежные и протяжные станки и работа на них
3. Виды резцов и их геометрические параметры
Токарные резцы подразделяются по назначению, материалу рабочей части, форме головки и направлению подачи, конструкции, сечению стержня и т.д.
По назначению различают резцы проходные, подрезные, отрезные, расточные, галтельные, фасонные и резьбовые.
Токарные резцы применяют:
- проходные – для обтачивания наружных цилиндрических и конических поверхностей;
- расточные – проходные и упорные – для растачивания глухих и сквозных отверстий;
- отрезные – для отрезания заготовок и точения канавок;
- резьбовые – для нарезания наружных и внутренних резьб;
- фасонные – для обработки фасонных поверхностей;
- галтельные – для обтачивания переходных поверхностей между ступенями валов по радиусу.
По направлению подачи проходные резцы подразделяют на правые и левые.
По форме головки и ее расположению резцы подразделяются на прямые, отогнутые и изогнутые.
По конструкции резцы могут быть цельные, с приваренной встык головкой, с припаянной пластинкой и с механическим креплением режущих пластин. В качестве материала рабочей части обычно используют быстрорежущие стали, твердые сплавы и металлокерамику.
По сечению стержня различают резцы прямоугольные, квадратные и круглые.
Токарный прямой проходной резец (рис. 3.1) состоит из рабочей части (головки) 2 и тела (стержня) 3. Тело резца служит для его установки и закрепления в резцедержателе. Рабочая часть резца образуется при его заточке и содержит следующие элементы: передняя поверхность 4 (поверхность, по которой сходит стружка); главная задняя поверхность 7 (она наиболее развита и направлена по движению подачи); вспомогательная задняя поверхность 7 (направлена против движения подачи). Пересечение передней и главной задней поверхностей дает главную режущую кромку 6, пересечение передней и вспомогательной задней поверхностей дает вспомогательную режущую кромку 5. Режущие кромки пересекаются в вершине резца 8. Расположение поверхностей и кромок резца определяется его заточкой (геометрия инструмента).
Рис. 3.1. Элементы и части прямого токарного проходного резца:
1 — вспомогательная задняя поверхность; 2 - головка резца; 3 — тело резца; 4 — передняя поверхность; 5, 6 — вспомогательная и главная режущие кромки соответственно; 7 — главная задняя поверхность; 8 — вершина резца
Для определения углов, под которыми располагаются элементы инструмента, вводят координатные плоскости. Рассматривают три системы координат: инструментальную, статическую и динамическую. В инструментальной системе координат инструмент рассматривается как геометрическое тело. В статической системе координат скорость главного движения отлична от нуля, а скорость движения подачи равна нулю. В динамической системе координат скорости главного движения и движения подачи отличны от нуля.
Рис 3.2. Координатные плоскости токарного проходного резца:
Dr – движение резания; DS – движения подачи; Pv - основная плоскость; Pn – плоскость резания
Рассмотрим геометрию режущей части инструмента в статической системе координат на примере токарного проходного резца (рис. 3.3).
Главные углы рассматриваются в главной секущей плоскости Рх. Главный задний угол α — угол между касательной к главной задней поверхности в рассматриваемой точке главной режущей кромки и плоскостью резания. Наличие угла уменьшает трение между обработанной и главной задней поверхностями, что увеличивает стойкость инструмента. Однако чрезмерное увеличение угла приводит к уменьшению прочности режущего лезвия. Величина угла — в пределах 5... 10° и выбирается в зависимости от упругих свойств обрабатываемого материала. Для тех видов обработки, при которых скорость подачи соизмерима со скоростью главного движения (нарезание резьбы), угол выбирается в пределах 8... 14°.
Углом заострения β называется угол между передней и главной задней поверхностями резца.
Главный передний угол γ — угол между основной плоскостью и передней поверхностью. Он может быть положительным (если передняя поверхность расположена ниже основной плоскости), равным нулю (передняя поверхность совпадает с основной плоскостью) и отрицательным (если передняя поверхность расположена выше основной плоскости). При обработке низкоуглеродистых и низколегированных сталей быстрорежущим инструментом угол γ выбирают в пределах 12... 18°. При обработке вязких материалом угол увеличивают, а при обработке хрупких и твердых материалов — уменьшают вплоть до отрицательных значений.
Рис. 3.3. Углы резца в статической системе координат:
Dr — движение резания; Ds — движение подачи; Pv — основная плоскость; Рn—плоскость резания; Рτ— главная секущая плоскость; α, γ — главные задний и передний углы; φ, φ1— главный и вспомогательный углы в плане; λ— угол наклона главной режущей кромки
Углы в плане рассматриваются между направлением движения подачи и проекцией соответствующей режущей кромки на основную плоскость. Главный угол в плане φ — угол между проекцией главной режущей кромки на основную плоскость и направлением движения подачи. Вспомогательный угол в плане φ1 — угол между проекцией вспомогательной режущей кромки на основную плоскость и направлением движения подачи. При обработке деталей малой жесткости угол φ берут близким или равным 90°, так как в этом случае радиальная сила, вызывающая изгиб детали, минимальна. В зависимости от условий работы принимают φ= 10. . .90°. Наиболее распространенной величиной угла резца в плане при обработке на универсальных токарных станках является φ=45°. Вспомогательный угол в плане φ1=0...45°; наиболее распространен φ1=12...15°.
Угол наклона главной режущей кромки λ — это угол между главной режущей кромкой и основной плоскостью, проведенной через вершину резца. Если вершина резца является высшей частью главной режущей кромки, λ > 0; если совпадает с основной плоскостью, λ = 0; если вершина является низшей частью главной режущей кромки, λ < 0. С увеличением угла ухудшается качество обработанной поверхности. Но чаще всего выбор величины и знака угла определяется направлением схода стружки. При отрицательных значениях угла λ стружка сходит по направлению движения подачи, что безопасно при работе на универсальных станках; при положительных — стружка сходит по направлению против движения подачи, что безопасно при работе на станках с автоматическим и полуавтоматическим циклом. Положительные углы применяются при обработке отверстий для того, чтобы стружка выходила из отверстия.
Угол наклона главной режущей кромки λ определяет направление схода стружки. При положительном к стружка имеет направление на обработанную поверхность, при отрицательном λ — на обрабатываемую поверхность.
