- •Содержание
- •Тематический план дисциплины
- •Структура учебной дисциплины
- •10 Основные понятия и определения теплопередачи, теплопроводность, закон Фурье
- •10.1 Основные положения теплопередачи
- •10.2. Дифференциальное уравнение теплопроводности
- •10.3 Условия однозначности. Начальные и граничные условия
- •Вопросы для самоконтроля
- •11 Теплопроводность плоских и цилиндрических стенок. Нестационарные процессы теплопроводности
- •11.1 Стационарная теплопроводность через плоскую стенку
- •11.2 Нестационарные процессы теплопроводности
- •Вопросы для самоконтроля
- •12 Подобие и моделирование процессов конвективного теплообмена
- •12.1 Конвективный теплообмен
- •12.2. Гидродинамический и тепловой пограничные слои
- •12.3 Дифференциальное уравнение конвективного теплообмена
- •12.5 Методы теории подобия и теплового моделирования
- •12.6 Основные критерии гидродинамического и теплового подобия
- •Вопросы для самоконтроля
- •13 Теплоотдача при свободном движении жидкости
- •13.1 Решение задач свободной конвекции
- •13.2 Теплоотдача при свободном движении жидкости в большом объеме
- •13.3 Теплоотдача при свободном движении жидкости в ограниченном пространстве
- •Вопросы для самоконтроля
- •14 Теплоотдача при вынужденном движении жидкости. Теплоотдача при фазовых превращениях
- •14.1 Теплоотдача в трубах различной формы поперечного сечения и различной шероховатости
- •14.2 Теплоотдача при вынужденном поперечном омывании трубы
- •14.3 Теплоотдача при вынужденном поперечном пучков труб
- •14.4 Теплообмен при конденсации пара
- •14.5 Теплообмен при кипении жидкости
- •Вопросы для самоконтроля
- •15 Теплообмен излучением. Основные законы теплового излучения
- •15.1 Теплообмен излучением
- •15.2 Основные законы теплового излучения
- •15.3 Теплообмен излучением между телами, разделёнными прозрачной средой
- •15.4 Теплообмен излучением при наличии экранов
- •15.5 Лучистый теплообмен между газовой средой и оболочкой
- •Вопросы для самоконтроля
- •16 Сложный теплообмен. Теплопередача через плоские и цилиндрические стенки
- •16.1 Сложный теплообмен
- •16.2 Теплопередача через плоские и цилиндрические стенки
- •16.3 Теплопередача через ребристые поверхности
- •16.4 Тепловая изоляция. Критический диаметр изоляции
- •Вопросы для самоконтроля
- •17 Теплообменные аппараты. Горение
- •17.1 Теплообменные аппараты
- •17. 2 Горение
- •Вопросы для самоконтроля
- •Список использованной и рекомендуемой литературы
- •26.05.06 «Эксплуатация судовых энергетических установок»
- •2 98309, Г. Керчь, ул. Орджоникидзе, 82.
15.3 Теплообмен излучением между телами, разделёнными прозрачной средой
На основании закона лучистого теплообмена можно вывести расчетные уравнения для лучистого теплообмена между твердыми телами. Рассмотрим теплообмен излучением между двумя параллельными пластинами (серыми телами) неограниченных размеров, разделенными прозрачной средой. Для каждой поверхности заданы постоянные во времени температуры Т1 и Т2 (Т1>Т2), поглощающие способности тел А1 и А2. Выведем формулу для определения количества теплоты q12, передаваемой от первой пластины ко второй. Падающий на первую пластину лучистый поток равен эффективному излучению второй пластины Еэф2. Тогда плотность потока результирующего излучения
.
(15.12)
В свою очередь
;
.
При установившемся режиме результирующие потоки для первой и второй пластин одинаковы по величине и противоположны по знаку, т. е. q12=—q21. Подставив значения эффективных излучений в уравнение (15.12), получаем
.
Отсюда
Согласно законам Кирхгофа и Стефана—Больцмана,
.
Окончательно
,
(15.13)
Где
называют
приведенной поглощающей способностью
системы.
15.4 Теплообмен излучением при наличии экранов
Экраны используют для уменьшения передачи теплоты потоком излучения. Обычно экран представляет собой тонкий металлический лист с большой отражательной способностью. Температуры обеих поверхностей экрана можно считать одинаковыми.
Рассмотри
действие экрана между двумя плоскими
безграничными параллельными поверхностями,
причем передачей теплоты конвекцией
пренебрегаем. Поверхности стенок и
экрана считаем одинаковыми. Температуры
стенок
и
поддерживаются постоянными, причем
>
.
Допускаем, что коэффициенты излучения
стенок и экрана равны между собой. Тогда
приведенные коэффициенты излучения
между поверхностями без экрана, между
первой поверхностью и экраном, экраном
и второй поверхностью равны между собой.
Поверхностную плотность лучистого потока, передаваемую от первой поверхности ко второй (без экрана), определяем из уравнения:
. (15.14)
Поверхностная плотность лучистого потока, передаваемая от первой поверхности к экрану:
, (15.15)
от экрана ко второй поверхности:
. (15.16)
При
установившемся тепловом равновесии
=
,
поэтому
,
откуда
.
Подставляя полученную температуру экрана в любое из уравнений, получаем:
. (15.17)
Таким образом, установка экрана уменьшает теплоотдачу вдвое. Аналогично можно доказать, что установка штук экранов уменьшает теплоотдачу в ( +1) раз.
15.5 Лучистый теплообмен между газовой средой и оболочкой
Одно- и двухатомные газы практически прозрачны для теплового излучения. Значительной излучающей и поглощающей способностью, имеющей практическое значение, обладают трех- и многоатомные газы. Для теплотехнических расчетов наибольший интерес представляют углекислый газ и водяной пар, образующийся при горении топлива. В отличие от твердых тел, имеющих в большинстве сплошные спектры излучения, газы излучают энергию лишь в определенных интервалах длин волн Dl, называемых полосами спектра. Для лучей других длин волн вне этих полос газы прозрачны, и их энергия излучения равна нулю. Таким образом, излучение и поглощение газов имеют избирательный характер. Если поглощение и излучение энергии в твердых телах происходят в тонком поверхностном слое, то газы излучают и поглощают энергию во всем объеме. Количество поглощаемой газом энергии зависит от числа находящихся в данном объеме микрочастиц газа. Последнее пропорционально толщине газового слоя, характеризуемой длиной пути луча l, парциальному давлению газа р и его температуре Т. Следовательно,
.
(15.18)
Тогда в соответствии с законом Кирхгофа
.
(15.19)
Для каждой полосы спектра
.
Плотность интегрального излучения газовой среды определится суммой их значений для отдельных полос, то есть
.
Плотность интегрального излучения для двуокиси углерода и водяного пара по опытным данным:
Отсюда следует, что законы излучения газов значительно отклоняются от закона Стефана — Больцмана. Однако в основу практических расчетов излучения газов положен именно этот закон. В итоге плотность интегрального излучения с поверхности газового слоя определяется уравнением
,
(15.20)
где e г — степень черноты газового слоя, зависящая от температуры, давления и толщины слоя газа. Для Н2О и СО2 значения eг приводятся в виде номограмм, удобных для практических расчетов. Степень черноты газовых смесей определится как сумма степеней черноты отдельных компонентов. Плотность лучистого потока, передаваемого от газа к окружающим его стенкам (оболочке), вычисляется по уравнению
,
(15.21)
где eг
— степень черноты газа при температуре
газа Тг;
Аг
— поглощающая
способность газа при температуре
оболочки Тст;
—
эффективная степень черноты оболочки.
Литература: [4], с. 52-58; [5], с. 193-208; [11], с. 43-45; [12], с. 48-50.
