- •Законы Менделя.
- •Взаимодействие аллелей одного гена.
- •Митохондриальный или цитоплазматический тип наследования
- •Генетическое значение митоза и мейоза
- •Хромосомы человека.
- •Условия выполнения законов Менделя.
- •Цитологические основы наследственности.
- •Клонирование генов.
- •Работа с микроорганизмами
- •15. Развитие представлений о гене.
- •Конъюгация - прямой контакт двух разнокачественных клеток, сопровождаемый хотя бы частичным переносом генетического материала от клетки-донора к клетке-реципиенту.
- •Трансдукция - перенос генетического материала с помощью вирусов из клетки-донора в клетку-реципиент.
- •18. Механизмы онтогенетической изменчивости.
- •20. Хромосомные перестройки.
- •21. Принципы построения генетических карт.
- •22. Матричные процессы у эукариот и прокариот.
- •23. Инбридинг и гетерозис.
- •24. Универсальные свойства генетического материала.
- •25. Генная инженерия.
- •26. Проблемы экологической генетики.
- •27. Моногенные болезни человека.
- •28. Полигибридное скрещивание.
- •29. Цитологический метод в генетике человека.
- •30. Врожденные аномалии развития.
- •2. 1952Г. Эксперимент Альфреда Херши и Марты Чейз.
- •36. Факторы генетической динамики популяции.
- •37. Повторяющиеся последовательности в геноме человека.
- •38. Оперон и его работа
- •39. Тесты на аллелизм: правила и исключения.
- •44. Сцепленное с полом наследование.
- •45. Причины отклонения от законов Менделя.
- •46. Рестрикционное картирование.
- •47. Внутригенное картирование.
- •48. Клонирование нуклеотидных последовательностей.
- •49. Полиплоидия.
- •50. Генетика количественных признаков.
- •51. Хромосомные болезни человека.
- •52. Метод родословных.
- •53. Цитологические карты человека.
- •54. Молекулярные методы идентификации личности.
- •55. Модификационная изменчивость.
- •56. Трансляция. Генетический код.
- •Генетический код, активация аминокислот
- •Транскрипция
- •Созревание рнк
- •60. Особенности генетики человека.
49. Полиплоидия.
ПОЛИПЛОИДИЯ - увеличение числа наборов хромосом в клетках организма, кратное гаплоидному (одинарному) числу хромосом; тип геномной мутации.
Половые клетки большинства организмов гаплоидны (содержат один набор хромосом – n), соматические – диплоидны (2n). Организмы, клетки которых содержат более двух наборов хромосом, называются полиплоидами: три набора – триплоид (3n), четыре – тетраплоид (4n) и т. д. Наиболее часто встречаются организмы с числом хромосомных наборов, кратным двум, – тетраплоиды, гексаплоиды (6 n) и т. д. Полиплоиды с нечётным числом наборов хромосом (триплоиды, пентаплоиды и т. д.) обычно не дают потомства (стерильны), т. к. образуемые ими половые клетки содержат неполный набор хромосом – не кратный гаплоидному. Полиплоидия может возникнуть при нерасхождении хромосом в мейозе. В этом случае половая клетка получает полный (нередуцированный) набор хромосом соматической клетки (2n). При слиянии такой гаметы с нормальной (n) образуется триплоидная зигота (3n), из которой развивается триплоид. Если обе гаметы несут по диплоидному набору, возникает тетраплоид. Полиплоидные клетки могут возникнуть в организме при незавершённом митозе: после удвоения хромосом деления клетки может не происходить, и в ней оказываются два набора хромосом. У растений тетраплоидные клетки могут дать начало тетраплоидным побегам, цветки которых будут вырабатывать диплоидные гаметы вместо гаплоидных. При самоопылении может возникнуть тетраплоид, при опылении нормальной гаметой – триплоид. При вегетативном размножении растений сохраняется плоидность исходного органа или ткани. Полиплоидия широко распространена в природе, но среди разных групп организмов представлена неравномерно. Большое значение этот тип мутаций имел в эволюции диких и культурных цветковых растений, среди которых около 47 % видов – полиплоиды. Полиплоидные растения часто более жизнеспособны и плодовиты, чем нормальные диплоиды. Высокая степень плоидности свойственна простейшим – число наборов хромосом у них может возрастать в сотни раз. Среди многоклеточных животных полиплоидия редка и более характерна для видов, утративших нормальный половой процесс – гермафродитов (земляных червей), и видов, у которых яйцеклетки развиваются без оплодотворения путем партеногенеза, (некоторых насекомых, рыб, саламандр). Одна из причин, по которой полиплоидия у животных встречается значительно реже, чем у растений, заключается в том, что у растений возможно самоопыление, а большинство животных размножается путём перекрёстного оплодотворения. То есть возникшему мутанту-полиплоиду нужна пара – такой же мутант-полиплоид другого пола. Вероятность подобной встречи крайне низка. Довольно часто у животных бывают полиплоидными клетки отдельных тканей (напр., у млекопитающих – клетки печени). Поскольку полиплоидные формы часто обладают ценными хозяйственными признаками, искусственную полиплоидизацию применяют в растениеводстве для получения исходного селекционного материала. С этой целью используют специальные мутагены (напр., алкалоид колхицин), нарушающие расхождение хромосом в митозе и мейозе. Получены урожайные полиплоиды ржи, гречихи, сахарной свёклы и др. культурных растений; стерильные триплоиды арбуза, винограда, банана популярны благодаря бессемянным плодам.
