- •Экзаменационный билет № 1
- •1. Элементарные преобразования строк матиц. Примеры.
- •2. Евклидовы пространства. Скалярное произведение векторов, длина (норма) вектора, их свойства.
- •Экзаменационный билет № 2
- •Применение элементарных преобразований для нахождения обратных матриц и для решения матричных уравнений.
- •Неравенство Коши-Буняковского для векторов евклидова пространства.
- •Экзаменационный билет № 3
- •Правило Крамера для решения систем линейных уравнений.
- •2 Неравенство треугольника для векторов евклидова пространства.
- •Экзаменационный билет № 4
- •Ранг матрицы. Линейная зависимость векторов.
- •2. Ортонормированный базис. Процесс ортогонализации базиса.
- •Экзаменационный билет № 5
- •1. Теорема о базисном миноре.
- •2 Билинейные формы и их свойства.
- •Свойства билинейных форм
- •Преобразование матрицы билинейной формы при переходе к новому базису. Ранг билинейной формы
- •Экзаменационный билет № 6
- •1. Метод Гаусса решения систем линейных уравнений.
- •2. Квадратичные формы и их свойства. Полярные билинейные формы.
- •Приведение квадратичной формы к каноническому виду
- •Закон инерции квадратичных форм
- •Классификация квадратичных форм
- •Необходимое и достаточное условие знакоопределенности квадратичной формы
- •Необходимое и достаточное условие знакопеременности квадратичной формы
- •Необходимое и достаточное условие квазизнакопеременности квадратичной формы
- •Экзаменационный билет № 7
- •1. Фундаментальная система решений однородной системы линейных уравнений.
- •Что такое однородная система линейных уравнений?
- •Фундаментальная система решений однородной системы уравнений
- •Взаимосвязь решений неоднородной и соответствующей однородной системы уравнений
- •2 Приведение квадратичной формы к нормальному виду. Метод Лагранжа.
- •Экзаменационный билет № 9
- •1. Линейные пространства. Базис. Размерность.
- •2 Преобразование матрицы билинейной формы при смене базиса.
- •Изменение матрицы билинейной (полуторалинейной) формы при изменении базиса.
- •Экзаменационный билет № 10
- •1. Подпространства линейного пространства. Свойства. Сумма и пересечение подпростанств.
- •2 .Собственные векторы и собственные значения линейного оператора.
- •Экзаменационный билет № 11
- •1. Переход к новому базсу в линейном пространстве. Матрица перехода.
- •Переход к новому базису
- •2 Длина вектора и угол между векторами в евклидовом пространстве.
- •Длина вектора и угол между векторами в евклидовом пространстве
- •Экзаменационный билет № 12
- •Определение линейного оператора и его свойства.
- •2. Теорема Кронекера-Капелли.
- •Экзаменационный билет № 13
- •1. Образ и ядро линейного оператора в линейном пространстве.
- •2 Решение неоднородных систем линейных уравнений. Представление общего решения в векторной форме.
- •Экзаменационный билет № 14
- •1. Матрица линейного оператора и ее свойства.
- •2. Системы линейных алгебраических уравнений (слау). Основные понятия.
- •Определение системы линейных алгебраических уравнений. Решение системы. Классификация систем.
- •Матричная форма записи систем линейных алгебраических уравнений.
- •Преобразования, допустимые в методе Гаусса:
- •Экзаменационный билет № 15
- •1. Преобразование матрицы линейного оператора при смене базиса.
- •2. Построение фундаментальной системы решений и общего решения однородной системы линейных уравнений.
- •Фундаментальная система решений (конкретный пример)
- •Как найти фундаментальную систему решений линейного уравнения?
- •Теорема условия существования обратной матрицы
- •Алгоритм нахождения обратной матрицы
- •Решение матричных уравнений
- •2 Ортогональные операторы в евклидовом пространстве. Их свойства.
- •Операторы в евклидовых пространствах
2. Теорема Кронекера-Капелли.
http://function-x.ru/systems_kroneker_kapelli.html
Теорема
Кронекера-Капелли о совместности
системы. Для
того, чтобы система линейных уравнений
была совместна, необходимо и достаточно,
чтобы ранг матрицы этой системы был
равен рангу её расширенной матрицы, то
есть чтобы
.
Здесь матрица A (матрица системы) - это матрица, составленная из коэффициентов при неизвестных:
В свою очередь матрица В (расширенная матрица) - это матрица, полученная присоединением к матрице системы столбца из свободных членов:
Ранги
этих матриц связаны неравенством
,
при этом ранг матрицы В может
быть лишь на одну единицу больше ранга
матрицы A.
Теорема
о числе решений. Пусть
для системы m линейных
уравнений с nнеизвестными
выполнено условие совместности, то есть
ранг матрицы из коэффициентов системы
равен рангу её расширенной матрицы.
Тогда, если ранг матрицы равен числу
неизвестных (
),
то система имеет единственное решение.
Если ранг матрицы системы меньше числа
неизвестных (
),
то система имеет бесконечно много
решений, а именно: некоторым n - r неизвестным
можно придавать произвольные значения,
тогда оставшиеся r неизвестных
определятся уже единственным образом.
Если
ранг матрицы системы линейных уравнений
равен числу уравнений, то есть
,
то система совместна при любых свободных
членах. В этом случае ранг расширенной
матрицы также равен m,
так как ранг матрицы не может быть больше
числа её строчек.
В ходе доказательства теоремы Кронекера-Капелли были получены явные формулы для решений системы (в случае её совместности). Если уже известно, что система совместна, то, чтобы найти её решения, необходимо:
1)
отыскать в матрице системы A ранга
отличный
от нуля минор
порядка,
равного рангу матрицы системы, то есть
ранга r;
2) отбросить те уравнения, которые соответствуют строкам матрицы A, не входящим в минор ;
3) члены с коэффициентами, не входящими в , перенести в правую часть, а затем, придавая неизвестным, находящимся в правой части, произвольные значения, определить по формулам Крамера оставшиеся r неизвестных из системы r уравнений с отличным от нуля определителем .
Пример 1. Следуя теореме Кронекера-Капелли, установить, совместна ли система уравнений
Если система совместна, то решить её.
Решение. Вычисляем ранг матрицы этой системы и ранг расширенной матрицы. В обоих случаях он равен 3. Следовательно, система линейных уравнений совместна. Так как ранг матрицы системы меньше числа неизвестных, то система имеет бесконечно много решений: одно неизвестное может быть взято произвольно. Минор
отличен
от нуля, поэтому последнее уравнение
отбрасываем и неизвестному
придаём
произвольное значение
.
Оставшиеся неизвестные определяются из системы
Решая последнюю систему по формулам Крамера или иным способом, находим
,
,
.
Присоединяя
сюда
,
получаем все решения данной системы
линейных уравнений.
Пример 2. Следуя теореме Кронекера-Капелли, установить, совместна ли система уравнений
Если система совместна, то решить её.
Решение. Вычисляем ранг матрицы этой системы:
.
Следовательно, ранг системы равен 3. Определим ранг расширенной матрицы:
.
Это означает, что ранг расширенной матрицы также равен 3. Следовательно, система совместна, а так как число неизвестных равно рангу матрицы системы, то она имеет единственное решение. Для решения можем использовать первые три уравнения:
Решая последнюю систему по формулам Крамера, находим
,
,
.
