- •Экзаменационный билет № 1
- •1. Элементарные преобразования строк матиц. Примеры.
- •2. Евклидовы пространства. Скалярное произведение векторов, длина (норма) вектора, их свойства.
- •Экзаменационный билет № 2
- •Применение элементарных преобразований для нахождения обратных матриц и для решения матричных уравнений.
- •Неравенство Коши-Буняковского для векторов евклидова пространства.
- •Экзаменационный билет № 3
- •Правило Крамера для решения систем линейных уравнений.
- •2 Неравенство треугольника для векторов евклидова пространства.
- •Экзаменационный билет № 4
- •Ранг матрицы. Линейная зависимость векторов.
- •2. Ортонормированный базис. Процесс ортогонализации базиса.
- •Экзаменационный билет № 5
- •1. Теорема о базисном миноре.
- •2 Билинейные формы и их свойства.
- •Свойства билинейных форм
- •Преобразование матрицы билинейной формы при переходе к новому базису. Ранг билинейной формы
- •Экзаменационный билет № 6
- •1. Метод Гаусса решения систем линейных уравнений.
- •2. Квадратичные формы и их свойства. Полярные билинейные формы.
- •Приведение квадратичной формы к каноническому виду
- •Закон инерции квадратичных форм
- •Классификация квадратичных форм
- •Необходимое и достаточное условие знакоопределенности квадратичной формы
- •Необходимое и достаточное условие знакопеременности квадратичной формы
- •Необходимое и достаточное условие квазизнакопеременности квадратичной формы
- •Экзаменационный билет № 7
- •1. Фундаментальная система решений однородной системы линейных уравнений.
- •Что такое однородная система линейных уравнений?
- •Фундаментальная система решений однородной системы уравнений
- •Взаимосвязь решений неоднородной и соответствующей однородной системы уравнений
- •2 Приведение квадратичной формы к нормальному виду. Метод Лагранжа.
- •Экзаменационный билет № 9
- •1. Линейные пространства. Базис. Размерность.
- •2 Преобразование матрицы билинейной формы при смене базиса.
- •Изменение матрицы билинейной (полуторалинейной) формы при изменении базиса.
- •Экзаменационный билет № 10
- •1. Подпространства линейного пространства. Свойства. Сумма и пересечение подпростанств.
- •2 .Собственные векторы и собственные значения линейного оператора.
- •Экзаменационный билет № 11
- •1. Переход к новому базсу в линейном пространстве. Матрица перехода.
- •Переход к новому базису
- •2 Длина вектора и угол между векторами в евклидовом пространстве.
- •Длина вектора и угол между векторами в евклидовом пространстве
- •Экзаменационный билет № 12
- •Определение линейного оператора и его свойства.
- •2. Теорема Кронекера-Капелли.
- •Экзаменационный билет № 13
- •1. Образ и ядро линейного оператора в линейном пространстве.
- •2 Решение неоднородных систем линейных уравнений. Представление общего решения в векторной форме.
- •Экзаменационный билет № 14
- •1. Матрица линейного оператора и ее свойства.
- •2. Системы линейных алгебраических уравнений (слау). Основные понятия.
- •Определение системы линейных алгебраических уравнений. Решение системы. Классификация систем.
- •Матричная форма записи систем линейных алгебраических уравнений.
- •Преобразования, допустимые в методе Гаусса:
- •Экзаменационный билет № 15
- •1. Преобразование матрицы линейного оператора при смене базиса.
- •2. Построение фундаментальной системы решений и общего решения однородной системы линейных уравнений.
- •Фундаментальная система решений (конкретный пример)
- •Как найти фундаментальную систему решений линейного уравнения?
- •Теорема условия существования обратной матрицы
- •Алгоритм нахождения обратной матрицы
- •Решение матричных уравнений
- •2 Ортогональные операторы в евклидовом пространстве. Их свойства.
- •Операторы в евклидовых пространствах
2 .Собственные векторы и собственные значения линейного оператора.
http://www.studfiles.ru/preview/6144691/page:4/
Вектор Х ≠ 0 называют собственным векторомлинейного оператора с матрицей А, если найдется такое число, что АХ =Х.
При этом число называютсобственным значениемоператора (матрицы А), соответствующим вектору х.
Иными словами, собственный вектор – это такой вектор, который под действием линейного оператора переходит в коллинеарный вектор, т.е. просто умножается на некоторое число. В отличие от него, несобственные векторы преобразуются более сложно.
Запишем определение собственного вектора в виде системы уравнений:
Перенесем все слагаемые в левую часть:
Последнюю систему можно записать в матричной форме следующим образом:
(А - Е)Х = О
Полученная система всегда имеет нулевое решение Х = О. Такие системы, в которых все свободные члены равны нулю, называют однородными. Если матрица такой системы – квадратная, и ее определитель не равен нулю, то по формулам Крамера мы всегда получим единственное решение – нулевое. Можно доказать, что система имеет ненулевые решения тогда и только тогда, когда определитель этой матрицы равен нулю, т.е.
|А
- Е|
=
=
0
Это уравнение с неизвестным называютхарактеристическим уравнением(характеристическим многочленом) матрицы А (линейного оператора).
Можно доказать, что характеристический многочлен линейного оператора не зависит от выбора базиса.
Например,
найдем собственные значения и собственные
векторы линейного оператора, заданного
матрицей А =
.
Для
этого составим характеристическое
уравнение |А - Е|
=
=
(1 -)2–
36 = 1 – 2+2-
36 =2–
2-
35; Д = 4 + 140 = 144; собственные значения1=
(2 - 12)/2 = -5;2=
(2 + 12)/2 = 7.
Чтобы найти собственные векторы, решаем две системы уравнений
(А + 5Е)Х = О
(А - 7Е)Х = О
Для первой из них расширенная матрица примет вид
,
откуда х2= с, х1 + (2/3)с = 0; х1 = -(2/3)с, т.е. Х(1)= (-(2/3)с; с).
Для второй из них расширенная матрица примет вид
,
откуда х2= с1, х1 - (2/3)с1 = 0; х1 = (2/3)с1, т.е. Х(2)= ((2/3)с1; с1).
Таким образом, собственными векторами этого линейного оператора являются все вектора вида (-(2/3)с; с) с собственным значением (-5) и все вектора вида ((2/3)с1; с1) с собственным значением 7.
Можно доказать, что матрица оператора А в базисе, состоящем из его собственных векторов, является диагональной и имеет вид:
,
где i– собственные значения этой матрицы.
Верно и обратное: если матрица А в некотором базисе является диагональной, то все векторы этого базиса будут собственными векторами этой матрицы.
Также можно доказать, что если линейный оператор имеет n попарно различных собственных значений, то соответствующие им собственные векторы линейно независимы, а матрица этого оператора в соответствующем базисе имеет диагональный вид.
Поясним это на предыдущем примере. Возьмем произвольные ненулевые значения с и с1, но такие, чтобы векторы Х(1)и Х(2)были линейно независимыми, т.е. образовали бы базис. Например, пусть с = с1= 3, тогда Х(1) = (-2; 3), Х(2) = (2; 3). Убедимся в линейной независимости этих векторов:
=
-12 ≠ 0. В этом новом базисе матрица А
примет вид А*=
.
Чтобы убедиться в этом, воспользуемся формулой А*= С-1АС. Вначале найдем С-1.
СТ=
;
С-1 =
;
