- •Физическая сущность процесса сварки. Классификация способов сварки. Основные технические задачи, решаемые с помощью сварки.
- •2.Источники тепла при сварке. Схематизация источников тепла и нагреваемых тел, применяемая для расчета температур при сварке.
- •Электрическая дуга как источник тепла.
- •3. Методы расчета температур при сварке. Зависимость температурного поля от параметров режима сварки и теплофизических свойств свариваемого материала.
- •Виды передачи тепла и их использование при сварке и пайке.
- •Основная развернутая формула контактной сварки
- •Сварочная ванна, факторы, определяющие размеры и форму сварочной ванны.
- •Этапы затвердевания сварочной ванны. Образование первичных кристаллитов. Первичная и вторичная структуры сварных соединений. Сварочная текстура и ее влияние на свойства сварных соединений.
- •Образование первичных кристаллитов. Скорости затвердевания и кристаллизации.
- •Скорости затвердевания и кристаллизации.
- •Сварочная текстура и ее влияние на свойства сварных соединений.
- •Горячие трещины при сварке, температурный интервал хрупкости. Механизм образования горячих кристаллизационных трещин.
- •Внешние признаки горячих трещин.
- •Меры по уменьшению склонности сварных швов к образованию горячих трещин.
- •8. Холодные трещины при сварке.
- •Водородная гипотеза образования холодных трещин.
- •Пути уменьшения склонности сварных соединений к образованию холодных трещин.
- •9. Причины образования пористости при сварке. Механизм образования пор при сварке плавлением.
- •10. Особенности протекания химических реакций при сварке.
- •11. Закон действующих масс и константа равновесия химических реакций и их применение при анализе сварочных процессов.
- •Закон действующих масс
- •12 Раскисление, легирование, рафинирование и модифицирование металла при сварке. Раскисление металла при сварке.
- •Раскисление углеродом.
- •Раскисление водородом.
- •Диффузионное раскисление.
- •13. Химическая неоднородность сварного соединения.
- •14. Назначение электродных покрытий, типы покрытий.
- •15. Сварочные шлаки, их физико-химические характеристики и свойства.
- •Химическое воздействие.
- •Вязкость шлаков.
- •Межфазное натяжение.
- •Плотности и газопроницаемость.
- •Электропроводность.
- •16. Факторы, определяющие характер переноса металла при дуговой сварке плавлением.
- •Вязкость жидкости и её практическое значение для процессов сварки и пайки.
- •. Окисление и диссоциация оксидов при сварке и пайке.
- •19. Строение электрической дуги. Виды электрических дуг, применяемых в сварочных процессах.
- •20. Сущность и основные параметры режима рдс покрытыми электродами.
- •21. Сущность и основные параметры режима механизированной сварки в защитных газах.
- •22. Сущность и основные параметры режимы сварки неплавящимся электродом в среде инертных газов.
- •23. Сущность и основные параметры режима механизированной и автоматической сварки под флюсом.
- •24. Сущность и основные параметры режима электрошлаковой сварки.
- •25. Сварка с использованием концентрированных источников энергии.
- •Сущность кислородной и плазменной резки.
- •28. Сварочная проволока и типы электродов для сварки.
- •29. Сварочные материалы для автоматической сварки под флюсом.
- •30. Оборудование для механизированной и автоматической сварки. Автоматы для сварки под флюсом.
- •31. Характерные зоны сварного соединения.
- •32. Технологии сварки низко- и среднелегированных сталей. Технологии сварки низколегированных конструкционных сталей
- •33. Технологии сварки высоколегированных сталей.
- •Особые указания по технологии сварки высоколегированных сталей и сплавов
- •34.Технологии сварки алюминиевых сплавов.
- •35. Nехнологии сварки титановых сплавов.
- •36. Технологии сварки чугуна.
- •Способы контактной сварки.
- •Преимущества контактной сварки перед другими способами:
- •Существуют два вида стыковой контактной сварки:
- •38. Особенности выделения тепла при контактной сварке.
- •39. Параметры режима контактной сварки
- •40.Шунтирование при контактной сварке.
- •41.Оборудование для контактной точечной сварки. Точечная сварка.
- •42. Электроды для контактных сварочных машин
- •43. Трансформаторы для контактной сварки.
- •Конструкция элементов трансформаторов Магнитопровод трансформатора
- •44. Исходные данные для конструирования сборочных, сварочных и контрольных приспособлений и основные требования к приспособлениям для сварки и пайки.
- •45. Базирование призматических и цилиндрических узлов в приспособлении. Правило 6-ти точек.
- •46. Установочные элементы сборочно-сварочных приспособлений.
- •Приспособления для перемещения изделий при сварке и пайке.
- •48. Приспособления для перемещения сварочного (паяльного) оборудования (инструмента)
- •49. Технология сборки и сварки балочных конструкций. Искажения формы двутавровых балок и методы их исправления
- •50. Технология изготовления негабаритных цилиндрических изделий (резервуаров, газгольдеров) и технология монтажа их из рулонированных заготовок
- •51. Технология изготовления шаровых резервуаров. Технологические схемы изготовления негабаритных цилиндрических конструкций (вращающиеся печи, сосуды).
- •Технология изготовления труб. Технология сборки и сварки магистральных трубопроводов.
- •53.Устойчивость энергетической системы источник-дуга при изменении тока.
- •54. Устойчивость энергетической системы источник-дуга при изменении длины дуги.
- •55. Механизмы начального возбуждения и развития дугового разряда.
- •Способы устранения постоянной составляющей тока при дуговой сварке.
- •Сварочные трансформаторы.
- •Сварочные выпрямители.
- •59. Инверторные источники питания.
- •60. Сварочные генераторы.
- •61. Многопостовые источники питания постоянного тока
- •Виды автоматического управления. Задачи каждого вида. Принципы автоматического регулирования.
- •63. Процесс дуговой сварки как объект управления.
- •Контактная сварка как объект управления.
- •65. Системы автоматического регулирования энергетических параметров дуговой сварки. Автоматическое регулирование тока сварки
- •66. Саморегулирование при сварке плавящимся электродом. Системы автоматического регулирования длины дуги.
- •Автоматическое управление положением сварочной горелки при сварке и наплавке.
- •Автоматическое регулирование процессов точечной и шовной сварки
- •69. Этапы выполнения научно исследовательской работы и их краткая характеристика.
- •70. Однофакторный эксперимент и его планирование.
- •71. Многофакторный эксперимент (сущность, требования к факторам, процедуры планирования и обработки результатов).
- •Графическая обработка результатов исследования. Получение эмпирических формул.
- •73. Особенности расчета и проектирования сварных конструкций.
- •Особенности методов расчета сварных соединений и узлов Книга г.А. Николаев (Сварные конструкций ст.17)
- •76.Причины и особенности концентрации напряжений в сварных соединениях различных типов.
- •Основные принципы расчета прочности сварных соединений и узлов.
- •Характеристики усталостной прочности сварных соединений
- •79. Требования к проектированию сварных балочных конструкций.
- •80. Технология сборки и сварки двутавровых балок.
- •81.Последовательность расчета сварных колонн (стоек).
- •Особенности проектирования сварных оболочковых конструкций.
- •83. Оценка прочности сварных листовых конструкций.
- •84. Схема расчета горизонтальных резервуаров (цистерн).
- •85.Схема расчета прочности сварных трубопроводов.
- •86.Качество продукции. Показатели качества сварных соединений. Контроль качества. Управление качеством. Этапы контроля качества сварных соединений и конструкций
- •88. Разрушающий и неразрушающий контроль. Безобразцовые испытания. Внешний осмотр. Механические испытания сварных соединений. Анализ структуры сварных соединений. Оценка свариваемости
- •89. Принцип и классификация радиационных методов контроля. Источники ионизированных излучений, применяемые для радиационного контроля, области их применения. Радиография. Радиоскопия. Радиометрия.
- •91.Магнитные и вихретоковые методы контроля
- •92.Капиллярные методы контроля и методы течеискания
- •93. Основные задачи, этапы проектирования технических объектов. Назначение и задачи технологической подготовки производства.
- •94 Классификация сапр. Подсистемы сапр. Принципы построения и структура сапр.
- •97.Технические и социально-экономические эффекты от использования сапр в сварочном производстве. Выбор поставщика и особенности заключения договора на поставку сапр.
- •98. Структура и основные компоненты экспертных систем. Виды экспертных систем.
- •99. Проблемы защиты информации. Техническое обслуживание сапр.
- •100. Административное устройство глобальной сети Интернет. Уровни обработки информации в глобальных сетях.
- •101. Компьютерные технологии сопровождения жизненного цикла сложных технических объектов
- •102. Создание трёхмерных моделей технических объектов.
- •103. Пайка. Определение. История развития и роль в условиях современного производства. Особенности преимущества и недостатки.
- •.Стадии образования соединений при пайке. Активирование поверхностей паяемого материала и припоя.
- •105. Оксидные пленки на поверхности металлов. Особенности их образования и роста. Механические и физические методы активирования поверхностей.
- •Активирование флюсами.
- •Активирование поверхностей при пайке в газовых средах и вакууме. Автовакуумная пайка.
- •108. Смачивание припоем паяемого металла. Смачивание в равновесных и неравновесных системах
- •110. Контактное твёрдожидкое плавление. Технологические особенности контактно-реактивной пайки. Основные схемы. Возможности регулирования и управления.
- •111. Контактно-реактивное плавление. Технологические особенности контактно-реактивной пайки. Основные схемы. Возможности регулирования и управления.
- •Диаграммы состояний с химическими соединениями
- •Диаграммы с устойчивыми химическими соединениями.
- •Дальтониды и бертоллиды
- •113. Особенности кристаллизации паянных швов. Влияние стенок паяльного зазора на формирование структуры паяных швов. Ориентированная кристаллизация.
- •4.2. Кристаллизация паяных швов.
- •4.2.1. Общие закономерности кристаллизации паяных швов.
- •4.2.2. Ориентированная кристаллизация (эпитаксия).
- •114 Изотермическая кристаллизация паяного шва при диффузионной пайке.
- •4.3. Изотермическая кристаллизация
- •4.4. Особенности формирования структуры при кристаллизации паяных швов разнородных металлов
- •115. Паяемость конструкционных материалов. Определение. Паяемость меди и сплавов на ее основе.
- •Паяемость алюминиевых и магниевых сплавов. Алюминиевые и магниевые припои. Пайка алюминиевых сплавов
- •Способы пайки алюминия.
- •Флюсовая пайка.
- •Бесфлюсовая пайка.
- •Магнии и его сплавы
- •117.Паяемость титана, циркония и тугоплавких металлов (Та, Nв, Мо, w).
- •118. Паяемость конструкционных и нержавеющих сталей
- •119. Паяемость инструментальных твердых сплавов. Особенности пайки составного режущего и штампового инструмента.
- •120. Паяемость неметаллических материалов между собой (графит, керамика, кварц, стекло) и с металлами.
- •121.Основные методы и особенности исследования структуры и свойств паяных соединений. Дефекты паяных соединений
- •Методы неразрушающего контроля для обнаружения поверхностных дефектов в паяных соединениях
- •Методы неразрушающего контроля для обнаружения внутренних дефектов в паяных соединениях
- •122 Припои. Классификация. Основные системы сплавов-припоев. Виды заготовок припоев. Способы размещения припоев.
- •123. Флюсы для пайки. Классификация. Способы нанесения и удаления остатков флюсов и продуктов флюсования.
- •Газовые среды для пайки. Основные требования к оборудованию для получения контролируемых атмосфер. Очистка газов от примесей.
- •Требования к условиям хранения деталей перед пайкой. Сборка заготовок перед пайкой.
- •135. Режим пайки. Выбор параметров и условий пайки
- •136. Особенности пайки теплообменной аппаратуры и охлаждаемых конструкций.
- •Способы получения азотоводородных смесей.
- •138. Генераторы для получения восстановительных газовых смесей. Получение эндотермических и экзотермических атмосфер
- •Получение галоидосодержащих газов. Получение паров активных элементов.
- •140. Вакуум. Степени вакуума. Изменение режимов течения газа и проводимости трубопровода при откачке. Процессы изменения состояния газа в вакуумной системе. Основное уравнение вакуумной техники.
- •Типовая схема вакуумной системы. Основные требования к вакуумным системам. Общие принципы расчета вакуумных систем.
- •142. Классификация, основные характеристики и области применения различных типов вакуумных насосов.
- •143. Механические вакуумные насосы с масляным уплотнением.
- •144. Устройство и принцип работы пароструйных вакуумных насосов. Требования к рабочей жидкости пароструйных вакуумных насосов.
- •145. Приборы для измерения давления разреженного газа. Классификация и области применения
- •146. Классификация способов пайки. Общая характеристика оборудования для пайки. Технологическая классификация способов пайки
- •Особенности печного нагрева. Классификация печей. Печи периодического действия. Печи непрерывного действия. Особенности конструкции вакуумных печей. Нагреватели в печах сопротивления.
- •148. Оборудование для пайки погружением. Особенности индукционного нагрева и оборудование для индукционной пайки
- •149. Оборудование для газопламенной пайки и пайки электросопротивлением.
- •Конструктивные и технологические факторы, определяющие прочность паяных соединений. Основные принципы проектирования паяных соединений в конструкциях.
- •Напряженно-деформированное состояние стыковых и нахлесточных паяных соединений.
- •Вероятность безотказной работы паяных узлов. Критерий Мизеса при оценке прочности.
- •Виды отказов паяных узлов.
- •Механизм причинно-следственных зарождений отказов паяных соединений
- •Дефекты паяных соединений, причины их возникновения и меры предупреждения
- •Типы приспособлений для фиксации соединяемых изделий.
- •163. Порядок проектирования приспособлений.
- •164. Применение роботов в сварочном производстве.
- •165. Классификация приспособлений для пайки. Требования к приспособлениям для пайки с местным нагревом. Требования к приспособлениям для пайки с общим нагревом
143. Механические вакуумные насосы с масляным уплотнением.
Вращательные масляные насосы являются механическими насосами с вращающимся поршнем (ротором) и масляным уплотнением, откуда и происходит их название.
Пластинчато-роторные насосы. Примером такого насоса может служить конструкция, изображенная на рис. 5-4 (разрез перпендикулярно оси поршня). Камера 1 насоса погружена в прямоугольный чугунный бак 2, наполненный маслом. Впускной патрубок 3, проходя через крышку насоса и продолжаясь далее, проходит через камеру насоса в так называемое откачное пространство 4, где происходит вращение поршня (по стрелке). Вращающийся поршень состоит из барабана 5 и двух пластин 6, расположенных в прорезях барабана; отсюда и название насоса («пластинчато-роторный»). Между пластинами расположены стальные пружины, прижимающие пластины к цилиндрической стенке камеры насоса, ограничивающей откачное пространство. Ось вращения поршня совпадает с его геометрической осью, но смещена кверху по отношению к оси камеры так, Вращательные масляные насосы являются механическими насосами с вращающимся поршнем (ротором) и масляным уплотнением, откуда и происходит их название.
Пластинчато-роторные насосы. Примером такого насоса может служить конструкция, изображенная на рис. 5-4 (разрез перпендикулярно оси поршня). Камера 1 насоса погружена в прямоугольный чугунный бак 2, наполненный маслом. Впускной патрубок 3, проходя через крышку насоса и продолжаясь далее, проходит через камеру насоса в так называемое откачное пространство 4, где происходит вращение поршня (по стрелке). Вращающийся поршень состоит из барабана 5 и двух пластин 6, расположенных в прорезях барабана; отсюда и название насоса («пластинчато-роторный»). Между пластинами расположены стальные пружины, прижимающие пластины к цилиндрической стенке камеры насоса, ограничивающей откачное пространство. Ось вращения поршня совпадает с его геометрической осью, но смещена кверху по отношению к оси камеры так,
чтобы барабан при своем вращении постоянно соприкасался со стенкой камеры. В связи с таким расположением барабана пластины при работе насоса постоянно скользят вдоль прорезей, то сближаясь, то отдаляясь друг от друга. В баке имеются по бокам два отверстия: для установки правильного уровня масла в баке (верхнее отверстие) и для спуска масла из бака (нижнее отверстие). Масло при работе наcoca должно находиться на определенном уровне над клапаном 7; назначение клапана — пропускать газ, выбрасываемый из насоса, но не допускать его обратного проникновения внутрь насоса; слой масла над клапаном предохраняет последний от непосредственного соприкосновения с атмосферным воздухом.
Чтобы уяснить механизм работы насоса, обратимся к рис. 5-5, на котором схематически изображена камера насоса с поршнем и отверстиями: впускным и выпускным (указаны стрелками). Римскими цифрами указаны четыре характерных положения поршня, которые он занимает последовательно в течение одного полуоборота. Стрелка указывает направление вращения поршня. Положение / примем за начальное.
В положении II пластина А, продвинувшись вниз, создала расширение со стороны отверстия; в это расширение входит газ из вакуумной системы; пластина Б, продвинувшись вверх, произвела сжатие газа в сторону выпускного отверстия. В положении III пластина Л произвела еще дальнейшее всасывание газа, тогда как пластина Б выбросила сжатый газ через клапан выпускного отверстия (клапан не показан). Положение IV совпадает с начальным по- ложением / с той лишь разницей, что пластины поменялись местами. Далее работа насоса продолжается в описанном выше порядке. Таким образом, каждая пластина выполняет двойную роль: с одной своей стороны она тянет за собой газ, поступающий от впускного отверстия, с другой —: сжимает поступивший газ для его выбрасывания за пределы насоса через выпускное отверстие. При непрерывном вращении поршня всасывание и выбрасывание газа производятся поочередно обеими пластинами, благодаря чему и происходит откачка вакуумной системы, к которой присоединяется насос впускным патрубком.
П
ластинчато-статорные
насосы. Схематическое
изображение насоса приведено на рис.
5-11. Основные отличия от пластинчато-роторных
насосов заключаются в следующем. Барабан
2
расположен
экс-аксиалыю по отношению к камере, но
вращается по оси, совпадающей с
геометрической осью каморы / [для
смещения центра тяжести к оси вращения
в барабане высверливаются соответствующие
полости). Одной из своих образующих
барабан при вращении все время
скользит по цилиндру камеры и тем самым
описывает в откачном пространстве
объемы, аналогичные описываемым
пластинами в насосах предыдущей
конструкции. Разделение впускной 3 и
выпускной 4
сторон
осуществляется пластиной 5, которая все
время прижимается к барабану пружиной
6,
скользя
вдоль прорези в стенке камеры. Механизм
всасывания <и выбрасывания газа насосом
поясняется схематическим изображением
(рис. 5-12) четырех характерных последовательных
положений поршня. Основным преимуществом
насосов рассматриваемого типа является
уменьшение количества ответственных
мест внутри насоса, представляющих
опасность прорыва газа в вакуумную
сторону; в пластинчато-статор ном насосе
такими местами являются только места
соприкосновения бара бана с камерой и
пластиной. Отсутствие прорезей в
барабане устраняет лишнюю возможность
просачивания воздуха в сторону впускного
патрубка. Вредное пространство в
пла-стинчато-статорных насосах имеет
меньшие размеры по сравнению с
пластинчато-роторными насосами.
З
олотниковые
насосы. Примером
насосов этой конструкции служит
насос, изображенный на рис. 5-14. На валу
при помощи шпонки насажен эксцентрик
/, расположенный и вращающийся аналогично
барабану в пластинчато-статор-ных
насосах. Однако он не касается стенок
откачной каме ры, а заключен в обойму
2. Обойма, охватывающая эксцентрик,
представляет собой сплошной цилиндр,
от которого кверху идет дополнительная-
плоская часть в виде полого и открытого
сверху параллелепипеда, снабженного
отверстиями 4
в
одной из широких боковых сторон.
Сравнительная характеристика вращательных масляных насосов. Пластинчато-роторные и пластинчато-статорные на-оосы могут достигать предельного давления (без учета парциального давления паров масла) 0,001 мм рт. ст. и могут обладать быстротой действия от долей литра до нескольких десятков литров в секунду. Их удобно применять при вакуумных установках как лабораторного, так и производственного типа. В частности, насосы с быстротой действия порядка I -ь 1,5 л/сек широко применяются при откачных автоматах, причем они часто конструируются в виде так называемых многократных насосов, когда в одном баке (для масла) монтируется два, три и более (до 12) отдельных насосов (секций); последние можно соединять друг с другом в любых комбинациях; обычно же отдельные секции используются как самостоятельные насосы, присоединяемые к позициям откачного автомата; они имеют только общий и другим вакуумным установкам. Их предельный вакуум может достигать тысячных долей миллиметра ртутного столба, быстрота действия — сотен литров в секунду.
Масло для заливки вращательных насосов. Масло, заливаемое во вращательные масляные насосы, должно удовлетворять определенным требованиям. К числу основных требований относится низкое давление насыщенных паров; только при этом условии в вакуумной системе достижимы достаточно низкие давления.
