- •Раздел 1
- •Глава 1
- •Кристаллические и аморфные тела
- •Элементы кристаллографии
- •Кристаллическая решетка
- •Кристаллографические индексы
- •Анизотропия
- •Влияние типа связи на структуру и свойства кристаллов
- •Взаимодействие частиц в кристаллах
- •Молекулярные кристаллы
- •Ковалентные кристаллы
- •Металлические кристаллы
- •Ионные кристаллы
- •Фазовый состав сплавов
- •Твердые растворы
- •Промежуточные фазы
- •Системы металл — неметалл
- •Дефекты кристаллов
- •Точечные дефекты
- •Линейные дефекты
- •Поверхностные дефекты
- •Жидкие кристаллы
- •Структура неметаллических материалов
- •Строение полимеров
- •Строение стекла
- •Строение керамики
- •Глава 2 свойства материалов
- •Критерии выбора материала
- •Механические свойства материалов
- •Механические свойства, определяемые при статических нагрузках
- •Механические свойства, определяемые при динамических нагрузках
- •Механические свойства, определяемые при переменных (циклических) нагрузках
- •Физические свойства материалов
- •Глава 3
- •Самопроизвольная кристаллизация
- •Несамопроизвольная кристаллизация
- •Форма кристаллов и строение слитков
- •Получение монокристаллов
- •Аморфные металлы
- •Нанокристаллические материалы
- •Глава 4
- •Методы построения диаграмм состояния
- •Основные равновесные диаграммы состояния двойных сплавов
- •Диаграмма состояния сплавов, компоненты которых полностью растворимы в жидком и твердом состояниях
- •Диаграмма состояния сплавов, компоненты которых ограниченно растворимы в твердом состоянии и образуют эвтектику
- •Диаграмма состояния сплавов, компоненты которых ограниченно растворимы в твердом состоянии и образуют перитектику
- •Диаграмма состояния сплавов с полиморфным превращением одного из компонентов
- •Диаграмма состояния сплавов с полиморфными превращениями компонентов и эвтектоидным превращением
- •Физические и механические свойства сплавов в равновесном состоянии
- •Диаграмма состояния железоуглеродистых сплавов
- •Компоненты и фазы в сплавах железа с углеродом
- •Превращения в сплавах системы железо — цементит
- •Превращения в сплавах системы железо — графит
- •Влияние легирующих элементов на равновесную структуру сталей
- •Легирование и фазовые превращения
- •Карбиды и нитриды в легированных сталях
- •Влияние легирующих элементов на фазовые превращения сталей
- •Диаграмма состояния тройной системы
- •Глава 5 формирование структуры деформированных металлов и сплавов
- •Пластическое деформирование моно- и поликристаллов
- •Механизм пластического деформирования
- •Особенности деформирования монокристаллов
- •Деформирование поликристаллов
- •Деформирование двухфазных сплавов
- •Свойства холоднодеформированных металлов
- •Возврат и рекристаллизация
- •Раздел 2
- •Глава 6
- •Виды термической обработки
- •Диффузия в металлах и сплавах
- •Вывод первого уравнения Фика на основе атомной теории диффузии
- •Вывод уравнений Фика на основе термодинамической теории диффузии
- •Зависимость коэффициента диффузии от температуры
- •Диффузия в металлах и полимерах
- •Термическая обработка сплавов, не связанная с фазовыми превращениями в твердом состоянии
- •Нагрев для снятия остаточных напряжений
- •Рекристаллизационный отжиг
- •Диффузионный отжиг (гомогенизация)
- •Термическая обработка сплавов с переменной растворимостью компонентов в твердом состоянии
- •Термическая обработка сталей
- •Превращения в сталях при нагреве до аустенитного состояния
- •Превращения аустенита при различных степенях переохлаждения
- •Основные виды термической обработки стали
- •Отжиг сталей
- •Нормализация сталей
- •Особенности закалки сталей
- •Закаливаемость и прокаливаемость сталей
- •Отпуск закаленных сталей
- •Оборудование для термической обработки
- •Глава 7
- •Общие закономерности
- •Диффузионное насыщение стальных деталей углеродом и азотом
- •Цементация стали
- •Насыщение поверхности стали одновременно углеродом и азотом
- •Ионная химико-термическая обработка сплавов
- •Диффузионное насыщение деталей металлами и неметаллами. Циркуляционный метод химико-термической обработки
- •Перспективы развития химико-термической обработки
- •Раздел 3
- •Глава 8
- •Общие требования, предъявляемые к конструкционным материалам
- •Конструкционная прочность материалов и критерии ее оценки
- •Методы повышения конструкционной прочности
- •Классификация конструкционных материалов
- •Глава 9
- •Классификация конструкционных сталей
- •Влияние углерода и постоянных примесей на свойства сталей
- •Углеродистые стали
- •Углеродистые стали обыкновенного качества
- •Углеродистые качественные стали
- •Легированные стали
- •Маркировка легированных сталей
- •Легированные машиностроительные стали Назначение легирования
- •Глава 10 материалы с особыми технологическими свойствами
- •Стали с улучшенной обрабатываемостью резанием
- •Железоуглеродистые сплавы с высокими литейными свойствами
- •Разновидности чугунов
- •Серые чугуны
- •Высокопрочные чугуны
- •Чугуны с вермикулярным графитом
- •Ковкие чугуны
- •Медь и ее сплавы
- •Свойства меди
- •Общая характеристика и классификация медных сплавов
- •Бронзы Оловянные бронзы
- •Глава 11 износостойкие материалы
- •Характеристики износа и виды изнашивания
- •Закономерности изнашивания деталей, образующих пары трения, и пути уменьшения их износа
- •Материалы с высокой твердостью поверхности
- •Материалы, устойчивые к абразивному изнашиванию
- •Материалы, устойчивые к
- •Материалы, устойчивые к изнашиванию в условиях больших давлений и ударных нагрузок
- •Антифрикционные материалы
- •Фрикционные материалы
- •Глава 12
- •Основные требования к пружинным материалам
- •Рессорно-пружинные стали
- •Материалы для упругих элементов приборостроения
- •Глава 13 материалы с малой плотностью
- •Особенности материалов с малой плотностью
- •Алюминий и его сплавы
- •Свойства алюминия
- •Общая характеристика алюминиевых сплавов
- •Деформируемые алюминиевые сплавы
- •Литейные алюминиевые сплавы
- •Гранулированные сплавы
- •Сплавы на основе магния
- •Свойства магния
- •Общая характеристика магниевых сплавов
- •Деформируемые магниевые сплавы
- •Литейные магниевые сплавы
- •Неметаллические материалы
- •Пластмассы Общая характеристика
- •Глава 14 материалы с высокой удельной прочностью
- •Титан и сплавы на его основе
- •Свойства титана и его сплавов
- •Влияние легирующих элементов на структуру и свойства титановых сплавов
- •Особенности термической обработки титановых сплавов
- •Легирующий элемент, %
- •Промышленные титановые сплавы
- •Бериллий и сплавы на его основе
- •Свойства бериллия
- •Бериллиевые сплавы
- •Композиционные материалы
- •Общая характеристика
- •Дисперсно-упрочненные композиционные материалы
- •Волокнистые композиционные материалы Структура и свойства
- •Композиционные материалы на неметаллической основе
- •Композиционные материалы на металлической основе
- •Гибридные композиционные материалы
- •Глава 15 материалы, устойчивые к воздействию температуры и рабочей среды
- •Коррозионно-стойкие материалы
- •Электрохимическая коррозия металлов
- •Коррозионно-стойкие непассивирующиеся металлы
- •Коррозионно-стойкие пассивирующиеся металлы
- •Коррозионно-стойкие стали
- •Коррозионно-стойкие покрытия
- •Жаростойкие материалы
- •Химическая коррозия металлов
- •Жаростойкость металлов
- •Жаростойкость сплавов
- •Жаропрочные материалы
- •Критерии жаропрочности материалов
- •I неустановившаяся стадия; II - установившаяся стадия; III - стадия разрушения
- •Основные группы жаропрочных материалов
- •Хладостойкие материалы
- •Критерии хладостойкости материалов
- •Основные группы хладостойких материалов
- •Радиационно стойкие материалы
- •Влияние облучения на структуру и механические свойства
- •Влияние облучения на коррозионную стойкость
- •Раздел 4
- •Глава 16 материалы с особыми магнитными свойствами
- •Общие сведения о ферромагнетиках
- •Магнитомягкие материалы
- •Низкочастотные магнитомягкие материалы
- •41 После отжига в поперечном магнитном поле. *2То же в продольном магнитном поле. *3То же без наложения магнитного поля.
- •Высокочастотные магнитомягкие материалы Общая характеристика ферритов
- •Материалы со специальными магнитными свойствами
- •Магнитотвердые материалы
- •Основные требования к магнитотвердым материалам
- •Магнитотвердые литые материалы
- •Порошковые магнитотвердые материалы
- •Деформируемые магнитотвердые сплавы
- •Глава 17
- •Сплавы с заданным температурным коэффициентом линейного расширения
- •Сплавы с заданным температурным коэффициентом модуля упругости
- •Глава 18
- •Материалы с высокой электрической проводимостью
- •Строение и свойства проводниковых материалов
- •Промышленные проводниковые материалы
- •Полупроводниковые материалы
- •Строение и свойства полупроводниковых материалов
- •Методы получения сверхчистых материалов
- •- Затравка; 3 - монокристалл; 4 - расплав полупроводника
- •Раздел 5
- •Глава 19
- •Материалы для режущих инструментов
- •Углеродистые стали
- •Низколегированные стали
- •Быстрорежущие стали
- •Порошковые твердые сплавы
- •Сверхтвердые материалы
- •Стали для измерительных инструментов
- •Глава 20 стали для инструментов обработки металлов давлением
- •Стали для инструментов холодной обработки давлением
- •Стали для инструментов горячей обработки давлением
- •Предметный указатель
- •Х 326 арактеристика износа и виды изнашивания
- •Московское машиностроительное производственное предприятие “Салют”
- •5 Пери (греч.) — вокруг
- •8 Особенности термической обработки некоторых магнитных сплавов будут рассмотрены в гл. 16.
Материалы для упругих элементов приборостроения
Упругие элементы приборов, кроме высоких пределов упругости, выносливости и релаксационной стойкости, должны обладать высокой коррозионной стойкостью, немагнитностью, электропроводностью.
О
Характеристика упругого элемента должна быть линейной, иначе нельзя обеспечить необходимую точность прибора.
Кроме того, она должна допускать возможно большее упругое перемещение. Чем оно больше при одной и той же силе, тем выше чувствительность упругого элемента. На рис. 12.3 видно, что при одинаковой силе Рг упру- гое перемещение первого элемента больше, чем второго (е1 > ег). В результате первый упругий элемент обеспечит большую чувствительность и меньшую относительную ошибку измерения.
Качество упругого элемента определяется также силой, необходимой для создания определенной упругой деформации. Чтобы вызвать деформацию, равную 61 (см. рис. 12.3), для первого элемента требуется меньшая сила, чем для второго, поэтому качество его выше.
Характеристика упругого элемента зависит от его конструкции (числа витков пружины, диаметра проволоки и т.п.) и упругих свойств материала: модуля и предела упругости. Угол наклона характеристики к оси деформации (см. рис. 12.3) определяется модулем упругости. Чем он меньше, тем больше упругая деформация, наибольшая величина которой бщах = 00,002/Е. Стали, имея высокий модуль упругости, не обеспечивают высокой чувствительности упругих элементов приборов. Для их изготовления используют сплавы на основе меди (бериллиевые бронзы), которые при практически одинаковом со сталями пределе упругости имеют почти в 2 раза меньший модуль упругости. Различие в модуле упругости этих материалов иллюстрирует рис. 12.3; характеристика 1 соответствует бронзам, характеристика 2 — сталям. 35
Рабочее напряжение упругого элемента должно быть ниже предела упругости материала, так как при нагружениях, близких к пределу упругости, в сплавах проявляются неупругие эффекты, ухудшающие работу элемента и всего прибора. Чем выше предел упругости материала относительно рабочих напряжений, тем меньше неупругие эффекты и выше класс точности прибора.
К неупругим эффектам относят упругое последействие, релаксацию, гистерезис и внутреннее трение.
Упругое последействие проявляется в отставании части упругой деформации материала от напряжения. При быстром возрастании напряжения в упругом элементе до значения о\ (см. рис. 12.1) деформация будет соответствовать точке а и лишь спустя некоторое время достигнет своего истинного значения — точки Ь. В результате упругого последействия, которое называют «прямым» при нагружении и «обратным» при разгрузке, показания прибора, определяемые упругим элементом, будут отклоняться от истинных значений при быстрой смене нагрузки.
В результате релаксации (см. рис. 12.1) напряжение снизится до точки с. После разгрузки упругий элемент сохранит остаточную деформацию, и показания прибора не возвратятся на нуль.
Гистерезис проявляется в несовпадении характеристик упругого элемента при нагружении и разгрузке (рис. 12.4). В результате не совпадают и показания прибора, определяемые упругим элементом. Гистерезис вызван рассеиванием в материале энергии при упругих напряжениях. Мерой рассеивания упругой энергии является площадь петли гистерезиса. Гистерезис оценивают отношением максимальной ширины петли Г к наибольшей упругой деформации етах.
Перечисленные неупругие эффекты возникают из-за неоднородности строения реальных поликристаллов, вследствие чего в отдельных микрообъемах при невысоких напряжениях развивается микропластическая деформация.
Внутреннее трение проявляется при циклических напряжениях ниже предела упругости в результате необратимой потери энергии деформирования. Энергия деформирования теряется вследствие теплообмена в окружающую среду, расходуется на изгибание дислокаций и перемещение внедренных атомов, а в ферромагнитных материалах —- на магнитно-упругий эффект, связанный с механострикцией.
В идеально упругом материале при циклическом нагружении, частота которого совпадает с собственной частотой упругого элемента, в результате резонанса наблюдается резкое возрастание амплитуды колебаний элемента. В реальных поликристаллах амплитуда А колебаний упругого элемента растет в некотором интервале частот, что является проявлением внутреннего трения. Ширину этого интервала на высоте 0,7Лтах
а
Рис. 12.4. Петля упругого гистерезиса
А
/рез
/
Рис. 12.5. Резонансная кривая упругого элемента
условились принимать за величину внутреннего трения (рис. 12.5). Отношение резонансной частоты /рез к ширине интервала Д/ называют добротностью.
Для того чтобы снизить неупругие эффекты, надо повысить сопротивление малым пластическим деформациям, т.е. сформировать малоподвижную дислокационную структуру. Закрепление дислокаций в рассматриваемых сплавах осуществляется выделяющимися после закалки и старения высокодисперсными когерентными частицами вторичных фаз.
Требование стабильной дислокационной структуры реализовано в бериллиевых бронзах и железоникелевых сплавах.
Бериллиевые бронзы используют для изготовления упругих элементов ответственного назначения. Бериллиевые бронзы — это сплавы на медной основе с высоким пределом упругости и низким модулем упругости (ГОСТ 18175-78). Такое сочетание свойств обеспечивает малые неупругие эффекты при больших упругих деформациях. Кроме того, сплавы обладают высокой коррозионной стойкостью, электрической проводимостью, немагнитностью, хорошей технологичностью.
Например, сплав БрБ2, в котором содержание бериллия составляет около 2 %, после закалки и старения имеет предел упругости сго,оо2 = = 600 МПа (табл. 12.1).
Увеличение содержания бериллия до 2,5 % повышает предел упругости. Однако высокая стоимость бериллия ограничивает применение такого сплава. Широко используют сплав БрБНТ1,9, легированный титаном и никелем. По упругим свойствам он мало уступает сплаву БрБ2,5.
Дальнейшее повышение предела упругости достигается микролегированием бериллиевых бронз бором (0,01 %) или магнием (0,1 %). Введение этих поверхностно-активных элементов изменяет процессы старения в сторону увеличения объемной доли выделяющихся частиц, степени их дисперсности, а также плотности и равномерности их распределения.
Таблица
12.1.
Химический состав и механические
свойства термически упрочненных
сплавов для упругих элементов приборов
Сплав
Содержание
элементов*, %
<70,002
Е-105
Ве
N1
Тл
А]
Сг
МПа
БрБ2
1,8-2,1
0,2-0,5
-
—
-
600
1,28
БрБНТ1,9
1,85-2,1
0,2-0,4
0,1-0,25
-
-
650
1,25
36НХТЮ
-
35-37
2,7-3,2
0,9-1,2
11,5-13
800
2,2
*
По ГОСТ 18175-78.
Разработаны способы термомеханической обработки бериллиевых бронз, при которой сплавы подвергают холодной пластической деформации в закаленном состоянии. Это приводит к более значительному росту предела упругости при старении и сильному снижению упругого последействия. Так, сплав БрБНТ1,9, деформированный на 50 % в закаленном состоянии, после старения при 350 °С в течение 0,25 ч имеет предел упругости <70,002 = Ю00 МПа.
Железоникелевые сплавы (ГОСТ 10994-74) менее дефицитны и дешевле бериллиевых бронз. Они имеют примерно тот же предел упругости, но обладают более высоким модулем упругости, что снижает допустимые упругие деформации элемента.
Сплав 36НХТЮ, применяемый для упругих элементов, является сплавом на железной основе. Высокое содержание никеля и хрома обеспечивает получение аустенитной структуры и способствует высокой коррозионной стойкости. Аустенитная структура придает сплаву хорошие технологические свойства в отношении обрабатываемости давлением и свариваемости. Титан и алюминий образуют с никелем и железом фазы переменной растворимости в аустените, что позволяет упрочнять сплав термической обработкой.
После закалки с 925 — 950 °С сплав приобретает однофазную структуру. В пропессе искусственного старения из аустенита выделяется промежуточная метастабильная '/-фаза, упрочняющая сплав. После старения при 700 °С в течение 2 ч сплав 36ХНТЮ имеет предел упругости а0,002 — 800 МПа (см. табл. 12.1). Дополнительное легирование молибденом в количестве 8 % (36НХТЮМ8) после термической обработки позволяет получить предел упругости <7о,оо2 = 950 МПа. Применение термомеханической обработки для сплава 36ХНТЮ повышает предел упругости До <70,002 = ИЮ МПа.
