- •1. Кинематика. Механикалық қозғалыс. Механикалық жүйе.
- •2. Механиканың негізгі моделі: материалдық нүкте, қатты дене, тұтас орта.
- •3. Кеңістік және уақыт. Санақ жүйесі. Материалдық нүктенің кинематикасы. Материалық нүкте қозғалысының траекториясы.
- •4. Жылдамдық және үдеу, радиус-вектор.
- •5. Галилейдің салыстырмалық принципі. Галилей түрлендірулері.
- •6. Дененің массасы және импульсі.
- •7. Қисық сызықтық қозғалыстағы жылдамдық және үдеу.
- •9. Бұрыштық жылдамдық және бұрыштық үдеу.
- •10. Эйнштейннің салыстырмалы принциптері.
- •11. Эйнштейн постулаттары.
- •12. Лоренц түрлендірулері және олардың салдары.
- •13. Жылдамдықтарды түрлендіру және қосу
- •14. Динамика. Инерциялық санақ жүйелері.
- •15. Ньютонның заңдары. Күш.
- •16. Механикадағы күштер: гравитациялық күштер, серпінді күштер, үйкеліс күштері.
- •18. Материалдық нүктенің импульс моменті. Күш моменті. Инерция моменті.
- •19. Қозғалмайтын оське қатысты қатты дененің айналмалы қозғалыс динамикасының негізгі теңдеуі. Штейнер теоремасы.
- •20. Сақталу заңдары. Импульстың сақталу заңы.
- •21.Механикалық энергия. Кинетикалық энергия.
- •22. Жұмыс. Қуат. Консервативті күштер.
- •23.Сыртқы күштер өрісіндегі потенциалдық энергия және оның күшпен байланысы. Механикалық энергияның сақталу заңы.
- •24.Импульс моменті. Реактивті қозғалыс. Импульс моментінің сақталу заңы.
- •25. Гидродинамика элементтері. Сұйықтың қозғалысы. Стационар ағыс. Сығылмайтын сұйықтық. Үзіліссіздік теңдеуі
- •26.Идеал сұйық. Бернулли теңдеуі.
- •27. Тұтқыр сұйық. Ламинарлық және турбуленттік ағыс
- •28.Лаплас формуласы. Стокс өрнегі. Пуазейль формуласы.
- •29.Тербелістер мен толқындар. Тербелмелі қозғалыс. Механикалық қозғалыс.
- •30.Еркін гармониялық тербелістер. Гармониялық тербеліс кинематикасы және динамикасы.
- •31.Серіппедегі жүктің тербелісі. Серіппелі маятник.
- •32.Математикалық маятник. Физикалық маятник.
- •33. Толқындық процесстер. Толқындық қозғалыстың негізгі сипаттамалары.
- •34.Дыбыс. Ультрадыбыс.
- •35.Статистикалық физика және термодинамика негіздері. Молекула-кинетикалық теория. Молекулалардың жылулық қозғалысы.
- •36. Термодинамикалық жүйе. Термодинамикалық жүйенің күйі. Термодинамикалық параметрлер.
- •37. Идеал газ. Идеал газ күйінің теңдеуі. Термодинамикалық процестер.
- •38. Ішкі энергия. Жылу мөлшері және термодинамикалық жұмыс.
- •39. Термодинамиканың бірінші бастамасы. Идеал газдағы изопроцестер.
- •40. Идеал газдың жылусыйымдылығы. Энергияның еркіндік дәрежелері бойынша біркелкі таралуы.
- •41. Жылу двигательдері. Пайдалы әсер коэффициенті.
- •42. Термодинамиканың екінші бастамасы. Карно циклі. Карно теоремасы.
- •43. Клаузиус теоремасы. Энтропия. Энтропияның қасиеті. Энтропия және ықтималдық
- •45. Максвелдің таралу заңы. Газ молекулаларының жылулық қозғалысының жылдамдығы.
- •46. Тасымал құбылыстары. Тепе-тең емес күйдегі термодинамикалық жүйелер.
- •47. Газдардағы тасымалдау құбылыстары.
- •48. Молекуалардың соқтығысуы. Молекулалардың эффективті диаметрлері.
- •49. Молекулалардың еркін жолдарының орташа ұзындығы.
- •50. Тасымал құбылыстарының жалпы теңдеуі. Жылу өткізгіштік. Тұтқырлық. Диффузия. Тасымал коэффиценттері.
- •51. Нақты (реал) газдар және қатты денелер. Ван-дер-Ваальс теңдеуі. Ван-дер-Ваальс изотермалары.
- •52. Газдарды изотермиялық сығу. Фазалық күйлер.
- •53. Клайперон-Клаузиус теңдеуі. Күй диаграммасы. Үштік нүкте.
- •54. Табиғаттағы электрлік құбылыстар және оларды
- •55. Электр тоғы. Тоқ күші. Тоқ тығыздығы.
- •56. Кулон заңы. Электр өрісі.
- •57. Электр өрісінің кернеулігі. Электр өрісінің суперпозиция принципі.
- •58. Потенциал. Потенциал мен электр өрісінің кернеулігі арасындағы байланыс.
- •59. Электрлік диполь.Электр өрісі кернеулік векторының циркуляциясы туралы теорема.Гаусс теоремасы.
- •60.Электр өрісіндегі өткізгіштер. Электр сыйымдылық.
- •61.Оқшауланған өткізгіштер
- •61.Конденсаторлар. Конденсатордың сыйымдылығы.
- •62. Электрлік ығысу және диэлектрлік өтімділік. Зарядталған конденсатор энергиясы.
- •63.Электр өрісінің энергиясы.Электростатикалық өріс энергиясының көлемдік тығыздығы.
- •64.Тұрақты электр тоғы. Электр тоғының болу шарттары.
- •65.Металдардағы электр тоғы.Ом және Джоуль-Ленц заңдарының дифференциалдық түрі. Тосын күштер. Біртекті емес тізбек бөлігіне арналған Ом заңы. Электр қозғаушы күш.
- •66.Тізбектің тармақталуы.Киргхов ережелері.
- •67.Газдардағы және плазмадағы электр тоғы.
- •68. Барометрлік формула. Больцман және Максвелдің үлестірулері
- •69. Тасымалдау құбылыстарының негізгі заңдары. Молекулалық қозғалыстың негізгі сипаттамалары
- •70. Идеал газдардың молекула-кинетикалық теориясының негізгі заңдарын тұжырымдаңыз
64.Тұрақты электр тоғы. Электр тоғының болу шарттары.
Еркін зарядталған бөлшектердің реттелген немесе бағытталған қозғалысын электр тогы деп атайды.
Электр тогының бағытына оң зарядталған бөлшектердің қозғалыс бағыты алынған.
Электр өрісінің әсерінен өткізгіштерде пайда болатын электр тогын өткізгіштік ток деп атайды, ал зарядталған денені тұтастай көшіретін болсақ, онда бұл кезде пайда болатын токты конвекциялық ток деп атайды.
Ортадан электр тогы өткенде келесі құбылыстар байқалады:
1. Электр тогы өткенде орта қызады (электр тогының жылулық әсері).
2. Электр тогы өткенде орта құрамды бөліктерге бөлінеді (электр тогының химиялық әсері).
3. Электр тогы өзін қоршаған ортада магнит өрісін тудырады (электр тогының магниттік әсері).
Электр тогын сандық сипаттау үшін физикалық скаляр шама ток күші енгізілген. Ток күші деп - өткізгіштің көлденең қимасынан бірлік уақытта өтетін зарядты айтады.
өлшем
бірлігі
Бағыты
мен шамасы өзгермейтін электр тогын
тұрақты электр тогы деп атайды.
мұндағы:
-
өткізгіштің көлденең қимасынан
уақытта
өтетін зарядтың мөлшері.
Өткізгіштің қарастырылатын бетінің кез-келген нүктесіндегі электр тогының бағыты мен шамасын анықтау үшін физикалық векторлық шама электр тогының тығыздығы енгізілген.
өлшем
бірлігі
.
Ток тығыздығының бағыты сол нүктедегі ток күшінің бағытымен сәйкес келеді және өткізгіштің көлденең қимасына перпендикуляр бағытталады.
Кез
келген токтар үшін
Тұрақты
электр тогы үшін (
) ток
тығыздығы
формуласымен
анықталады.
Ток күшін және ток тығыздығын өткізгіштегі зарядтардың реттелген қозғалысының жылдамдығы, концентрациясы арқылы өрнектейік. Өткізгіштегі заряд тасушылар концентрациясы n және оның әрқайсысының заряды q0-ге тең болса, онда dtуақыт ішінде ауданы S көлденең қима арқылы өтетін зарядтар шамасы:
мұндағы:
-
өткізгіштегі еркін электрондардың
реттелген қозғалысының орташа жылдамдығы.
Ток күші:
Ток тығыздығы:
Ортада электр тогы болу үшін қажетті шарттар:
1. Ортада еркін зарядталған бөлшектер болуы қажет;
2. Осы еркін зарядталған бөлшектерге сырттан күш әсер ету қажет, яғни ортада электр өрісі болуы керек.
Металдарда электр тогын тасымалдаушылар –электрондар, электролиттерде – оң және теріс иондар, газдарда – оң иондар мен электрондар және жартылай өткізгіштерде – электрондар мен кемтіктер болып табылады.
65.Металдардағы электр тоғы.Ом және Джоуль-Ленц заңдарының дифференциалдық түрі. Тосын күштер. Біртекті емес тізбек бөлігіне арналған Ом заңы. Электр қозғаушы күш.
1826 жыл неміс ғалымы Ом көптеген тәжірибенің нәтижесінде мынадай қорытынды жасады: тұрақты температурада өткізгіштегі ток күші түсірілген кернеуге тура пропорционал және өткізгіштің кедергісіне кері пропорционал болады.
мұндағы: R - өткізгіштің кедергісі, U – кернеу, I – ток күші.
Кедергі - өткізгіштің негізгі электрлік сипаттамасы болып табылады. Өткізгіштің кедергісі оның пішініне, тегіне және температураға тәуелді.
Өлшем
бірлігі
.
Өткізгіштің кедергісіне кері шама өткізгіштік деп аталады.
Өткізгіш біртекті болса кедергі келесі формуламен анықталады:
,
мұндағы:
-
өткізгіштің меншікті кедергісі,
-көлденең
қимасының ауданы,
-
ұзындығы.
Егер орта біртекті болмаса, онда кедергі келесі формуламен анықталады:
.
Өткізгіштің кедергісінің температураға тәуелділігі келесі өрнекпен анықталады:
,
мұндағы:
-кедергінің
температуралық коэффициенті.
1)
металлдар үшін температура артқанда
өткізгіштің кедергісі артады, яғни
,
2)
Электролиттер, газдар және жартылай
өткізгіштер үшін температура артқанда
өткізгіштің кедергісі кемиді, яғни
.
Кез-келген тізбекте электр тогы жүру үшін қажетті шарттар:
1. Тізбек тұйықталған болуы қажет.
2. Электр тогын тудыратын ток көзі болуы керек.
Дифференциал түріндегі Ом заңы
Тізбектің бөлігі үшін Ом заңын пайдаланамыз.
.
Кедергінің
өрнегін
Ом
заңына қойып, алатынымыз
.
Осыдан
немесе
Меншікті
кедергіге кері шама ортаның меншікті
өткізгіштігі деп аталады:
,
өлшем бірлігі
.
Осы өрнек дифференциал түріндегі Ом заңы деп аталады.
Тізбектегі токтың тығыздығы сол тізбектегі электр өрісінің кернеулігіне тура пропорционал болады.
