- •1. Введение. Цели и задачи курса защиты металлов от коррозии
- •1.1 Определение термина “коррозия металлов” и значение защиты металлов
- •1.2 Задачи и научные основы курса
- •1.3 Классификация коррозионных процессов. Термины и определения
- •1.4 Основные показатели коррозии и методы оценки коррозионной стойкости
- •1.5 Стандартизация в коррозии
- •2 Основы химической коррозии металлов и сплавов
- •2.1 Термодинамика газовой коррозии
- •2.2 Пленки на металлах, их защитные свойства
- •2.3 Классификация оксидных пленок
- •2.4 Условие сплошности
- •2.5 Диффузия в оксидных пленках. Схема роста защитных пленок
- •2.6 Кинетические законы окисления
- •2.7 Линейный закон окисления металлов
- •2.8 Схема роста сплошных защитных пленок
- •2.9 Параболический и степенной законы окисления.
- •2.10 Ионно-электронная модель высокотемпературного окисления
- •2.11 Логарифмический закон окисления
- •2. 12 Разрушение защитных пленок
- •2.13.1 Влияние температуры
- •2.13.2 Влияние давления
- •Влияние состава газовой среды
- •2.14 Окисление сплавов
- •2.15 Газовая коррозия железа, стали и чугуна
- •Внутренние факторы газовой коррозии железа и сталей
- •2.17. Обезуглероживание сталей и чугуна
- •2.18 Газовая коррозия меди и медных сплавов
- •3 Защита от газовой коррозии
- •3.1 Жаростойкое легирование
- •3.1.1. Жаростойкие сплавы
- •3.2. Защитные покрытия
- •3.3. Защитные атмосферы
- •3.4 Прочие методы защиты от газовой коррозии
- •4. Основы электрохимической коррозии металлических материалов.
- •4.1. Примеры и механизм электрохимической коррозии.
- •4.2. Электродные потенциалы, причины их возникновения, двойной электрический слой.
- •4.2.1 Обратимые потенциалы металлов, уравнение Нернста.
- •4.2.2 Необратимые потенциалы металлов, электроды сравнения
- •4.3 Термодинамика электрохимической коррозии металлов, диаграммы Пурбэ
- •4.4 Схема электрохимической коррозии
- •4.5. Катодные процессы при электрохимической коррозии металлов
- •4.6. Поляризация электродных процессов
- •4.7. Процессы с кислородной деполяризацией
- •4.8. Защита металлов от коррозии в нейтральных электролитах
- •4.9. Водородная деполяризация
- •4.10. Особенности процессов с водородной деполяризацией
- •4.11. Расчет электрохимической коррозии
- •4.12. Графические методы расчета коррозионного процесса
- •4.13. Контролирующий фактор коррозии
- •4.14. Сопротивления стадий ионизации и диффузии.
- •4.15. Практические случаи контроля коррозионных процессов
- •4.16. Пассивность металлов
- •4.17. Атмосферная коррозия
- •4.18. Морская коррозия
- •4.19. Биокоррозия
- •4.20. Локальные виды коррозии
- •5. Защита от электрохимической коррозии металлических материалов
- •5.1 Принципы коррозионностойкого легирования
- •5.1.1. Легирование легкопассивирующимися компонентами
- •5.1.2. Катодное легирование
- •5.1.3. Легирование с целью придания сплаву особых свойств
- •5.2. Обработка коррозионной среды
- •5.2.1.Уменьшение содержания деполяризатора.
- •5.2.2.Введение ингибиторов
- •5.3. Защитные покрытия
- •5.4. Электрохимическая защита
- •5.5. Защита от коррозии при проектировании оборудования.
5. Защита от электрохимической коррозии металлических материалов
Общие принципы и методы защиты от электрохимической коррозии включают группу методов воздействия на все основные составляющие системы (рис.).
Рис. 5.1 Схема методов защиты от электрохимической коррозии.
1-я группа методов – воздействие на металл, или коррозионностойкое легирование, при котором повышение коррозионной стойкости обеспечивается за счет введения в сплав:
а) элемента с более высокой химической стойкостью;
б) металла с более высокой склонностью к пассивации;
в) металлического элемента, облегчающего пассивацию основы сплава (катодное легирование);
г) катодно поляризующего зерно основного металла;
д) металлических атомов, сообщающих сплаву особые свойства.
2-я группа методов – воздействие на межфазную границу, при котором повышение стойкости достигается за счет:
- обработки поверхности металла (полировка), нагартовки (для уменьшения склонности к коррозионному растрескиванию), лазерной обработки поверхности с целью создания литой структуры,
- нанесения различных покрытий;
3-я группа методов предусматривает, в тех случаях, когда это возможно, воздействие на среду;
4-я группа – электрохимическая защита, применяемая только при электрохимической коррозии;
5-я группа – рациональное конструирование и прочие методы.
5.1 Принципы коррозионностойкого легирования
Если легирующий элемент, обладающий более высокой коррозионной стойкостью или лучшей пассивируемостью, образует с основным металлом твердый раствор в достаточно широком диапазоне концентраций, коррозионная устойчивость сплава при условии незначительной диффузионной подвижности его компонентов резко возрастает при определенных содержаниях легирующего элемента, кратных 1/8 его атомной доли (правило n/8 Таммана). Скачкообразное изменение коррозионной стойкости с изменением состава сплава, объясняется образованием в сплаве при определенных концентрациях сверхструктур, характеризующихся упорядоченным расположением атомных плоскостей, обогащенных атомами более благородного или легко пассивирующегося металла. Конкретные значения пороговых концентраций зависят как от природы легирующей добавки, так и от состава коррозионной среды.
В соответствии с правилом n/8 могут быть рассчитаны теоретически возможные пороги устойчивости двойных и тройных металлических систем, что позволяет более рационально подойти к выбору состава коррозионностойких сплавов. Для расчета содержания легирующего элемента в стойком бинарном сплаве, выраженного в массовых процентах применяются соотношения:
:
=
, (5.1)
Х+У = 100, (5.2)
где X и У - массовые концентрации (в расчете на 100 г сплава), а АА и АВ - атомные массы компонентов сплава, а параметр n имеем значения oт 1 до 7.
Для тройного сплава:
, (5.3)
X+Y+Z = 100, (5.4)
где, входит массовый процент Z и атомная масса AС третьего компонента, а также целые числа n1 и n2.
Правило Таммана в значительной степени носит феноменологический характер. Исследования по изучению влияния легирования на коррозионную стойкость сплавов показали, что не всегда содержание легирующего компонента, вызывающее скачкообразное увеличение коррозионной стойкости, строго соответствует правилу n/8. При этом скачкообразное увеличение коррозионной стойкости при легировании сплава более легко пассивирующимся компонентом может происходить и без образования упорядоченного твердого раствора.
