- •Лекция № 1 Тема: Алгебра событий
- •1. События, их классификация, вероятность события.
- •2. Операции над событиями.
- •Свойства классической вероятности:
- •4. Теорема сложения и умножения вероятностей.
- •Вероятность того, что деталь находится только в одном ящике, равна
- •5. Формула Бернулли. Формулы полной вероятностей и Байеса.
- •5.1. Повторение испытаний. Формула Бернулли.
- •5.2. Формула полной вероятности
- •5.3. Формула Бейеса. (формула гипотез)
- •6. Локальная и интегральная теорема Лапласа.
- •Лекция № 2 Тема: Характеристики случайных величин. Распределения случайных величин
- •1. Дискретные и непрерывные случайные величины.
- •2. Основные законы распределения дискретных и непрерывных случайных величин (биномиальный, геометрический, нормальный, показательный, равномерное распределение).
- •2.1. Биноминальное распределение.
- •2.3. Равномерное распределение.
- •2.4. Показательное распределение.
- •2.5. Нормальный закон распределения.
- •Лекция № 3 Тема: Распределения случайных величин
- •1. Функция, плотность распределения
- •2.1. Функция распределения.
- •Свойства функции распределения:
- •2.2. Плотность распределения.
- •Свойства плотности распределения:
- •2. Числовые характеристики (математическое ожидание, дисперсия, среднее квадратическое отклонение, мода, медиана).
- •Свойства математического ожидания:
- •Вычисление дисперсии.
- •Свойства дисперсии.
- •Среднее квадратическое отклонение.
- •Лекция № 4 Тема: Формы представления статистических данных.
- •Предмет математической статистики
- •1. Выборка из генеральной совокупности. Вариационный ряд. Гистограмма относительных частот
- •Выборочная функция распределения
- •Лекция № 5 Тема: Оценка параметров распределения.
- •1. Выборочные оценки параметров случайной величины. Основные требования к оценкам
- •2. Состоятельные несмещенные оценки для математического ожидания, дисперсии, ковариации
- •Два распределения, связанные с нормальным законом
- •Доверительные интервалы для математического ожидания и дисперсии
- •Лекция № 6 Тема: Проверка статистических гипотез
- •Правило проверки гипотезы о законе распределения:
- •Критерии согласия
- •2. Параметрические гипотезы.
- •Традиционный метод проверки однородности двух независимых выборок (критерий Стьюдента)
- •Общая постановка задачи проверки гипотез:
- •Лекция № 7 Тема: Математическая формулировка экономических и производственных задач
- •1. Представление ограничений ресурсов, капиталовложений и т.Д. В виде линейных неравенств.
- •Каноническая задача линейного программирования
- •Общая задача линейного программирования
- •2. Определение функции цели и нахождение вектора решений, удовлетворяющего задаче с заданными ограничениями.
- •Лекция № 8 Тема: Графический способ определения оптимального плана
- •1. Графическое решение задач с двумя неизвестными, заданных линейными неравенствами ограничений.
- •Частные случаи использования графического метода
- •Общий алгоритм графического метода
- •2. Построение выпуклого многоугольника возможных решений и определение оптимального плана с помощью градиента функции цели.
- •Лекция № 9 Тема: Симплексный метод для задач с естественным базисом
- •1. Симплекс-метод. Алгоритм симплекс-метода.
- •1. Симплекс-метод. Алгоритм симплекс-метода.
- •Алгоритм симплекс-метода
- •2. Введение естественных базисных переменных. Построение симплексной таблицы. Определение нулевого плана.
- •Лекция № 10 Тема: Симплексный метод для задач с искусственным базисом
- •Лекция № 11 Тема: Закрытая транспортная задача
- •1. Математическая формулировка закрытой транспортной задачи. Определение необходимого количества неизвестных.
- •2. Этапы определения плана решения транспортной задачи.
- •Лекция № 12 Тема: Открытая транспортная задача
- •1. Математическая формулировка открытой транспортной задачи.
- •2. Введение фиктивного поставщика (потребителя) для сведения данной транспортной модели к зтз.
- •Методическое обеспечение
- •2. Формула полной вероятности. Формула Байеса
- •3. Формула Бернулли.
- •4. Применение локальной и интегральной теоремы Лапласа.
- •Практическое занятие № 2 основные законы распределения дискретных случайных величин
- •1. Решение задач на биномиальный закон распределения.
- •2. Основные законы распределения.
- •3. Решение задач на закон Пуассона.
- •Практическое занятие № 3 совместный закон распределения двух случайных величин
- •1. Совместный закон распределения двух случайных величин
- •2. Решение задач по проверке параметрических гипотез.
- •Проверка гипотезы о законе распределения случайной величины по данным опыта
- •Модуль 3. Методы моделирования производственных процессов.
- •Требования к содержанию отдельных частей отчета по лабораторной работе
- •Лабораторная работа № 1 графический (геометрический) способ определения оптимального плана.
- •1. Математическая формулировка смысловой экономической задачи.
- •2. Построение выпуклого многоугольника возможных решений.
- •3. Варианты заданий лабораторной работы:
- •Лабораторная работа № 2 составление математической модели производственной задачи
- •1. Представление ограничений ресурсов в видее математических неравенств. Введение естественных или искусственных базисных переменных.
- •2. Формулировка функции цели.
- •3. Составление и преобразование симплексной таблицы для получения оптимального плана.
- •4. Варианты заданий
- •Лабораторная работа № 3, № 4 модель оптимального состава машинно-тракторного парка (мтп) для выполнения заданных с/х работ
- •4. Лабораторная работа № 4. Модель оптимального доукомплектования мтп.
- •1. Введение основных переменных по количеству используемых агрегатов.
- •2. Составление ограничений на данные переменные. Определение целевой функции.
- •3. Математическая формулировка задачи для использования программного продукта.
- •Лабораторная работа № 4. Модель оптимального доукомплектования мтп.
- •4. Порядок выполнения работы. Варианты заданий
- •Варианты заданий:
- •Лабораторная работа № 5 транспортная задача с закрытой моделью
- •1. Составление распределительной таблицы между поставщиками и потребителями
- •2. Поиск клеток с отрицательными потенциалами в планах «северо-западного угла» и «минимального элемента».
- •3. Порядок выполнения работы. Варианты заданий
- •Лабораторная работа № 6 Транспортная задача с открытой моделью
- •1.Составление распределительной таблицы между поставщиками и потребителями, введение фиктивного потребителя для превращения данной модели в закрытую.
- •2. План выполнения работы. Варианты заданий
- •1. Общие методические рекомендации
- •Контрольные задания для студентов
1. Представление ограничений ресурсов, капиталовложений и т.Д. В виде линейных неравенств.
Первое упоминание (1938 г.) о математических методах в эффективном управлении производством принадлежит советскому математику Л. В. Канторовичу. Год спустя, в 1939 г., Л. В. Канторович опубликовал работу «Математические методы организации и планирования производства» и практически применил полученные результаты.
Термин «линейное программирование» ввели американские математики Дж. Данциг и Т. Купманс в конце 40-х годов. Дж. Данциг разработал математический аппарат симплексного метода решения задач линейного программирования (1951 г.). Симплексный метод находит применение для решения широкого круга задач линейного программирования и до настоящего времени является одним из основных методов.
Линейное программирование — это раздел математики, ориентированный на нахождение экстремума (максимума или минимума) в задачах, которые описываются линейными уравнениями. Причем линейными уравнениями описывается как сама целевая функция, так и входные параметры (переменные) условия ограничений на входные параметры.
Необходимым условием задач линейного программирования является обязательное наличие ограничений на ресурсы (сырье, материалы, финансы, спрос произведенной продукции и т.д.).
Другим важным условием решения задачи является выбор критерия останова алгоритма (проблема остановки (или проблема останова) - это одна из центральных проблем в теории алгоритмов, которая может неформально быть поставлена в виде: даны описание процедуры и её начальные входные данные, требуется определить, завершится ли когда-либо выполнение процедуры с этими данными. Альтернативой этому является то, что она работает всё время без остановки. Проблема остановки занимает центральное место в теории вычислимости, поскольку представляет собой первый пример задачи, которую невозможно решить алгоритмическим путём. Для многих других задач можно доказать их алгоритмическую неразрешимость, попытавшись свести задачу к проблеме остановки. Это делается по следующей схеме: пусть есть некая задача, для которой требуется установить её неразрешимость), т.е. целевая функция должна быть оптимальна в некотором смысле. Оптимальность целевой функции должна быть выражена количественно. Если целевая функция представлена одним или двумя уравнениями, то на практике такие задачи решаются достаточно легко.
Критерий останова алгоритма (или критерий оптимальности) должен удовлетворять следующим требованиям:
быть единственным для данной задачи;
измеряться в единицах количества;
линейно зависеть от входных параметров.
Исходя из вышесказанного, можно сформулировать задачу линейного программирования в общем виде:
найти экстремум целевой функции
при ограничениях в виде равенств:
при ограничениях в виде неравенств:
и условиях неотрицательности входных параметров:
В краткой форме задача линейного программирования может быть записана так:
при условии
где
- входные переменные;
- числа положительные, отрицательные и
равные нулю.
В матричной форме эта задача может быть записана так:
Задачи линейного программирования можно решить аналитически и графически.
