- •Кинематика криволинейного движения. Векторный способ описания движения частицы. Вектор перемещения, мгновенной скорости, мгновенного ускорения.
- •Координатный способ описания движения. Модули вектора мгновенной скорости и вектора мгновенного ускорения.
- •Ускорение полное, нормальное, тангенциальное. Путь, пройденный частицей. Радиус кривизны траектории.
- •Масса. Сила. Центральные, консервативные, диссипативные силы. Принцип суперпозиции сил. Примеры.
- •Законы Ньютона.
- •Импульс материальной точки. Импульс системы материальных точек. Закон сохранения импульса.
- •Центр масс. Координаты центра масс. Теорема о движении центра масс.
- •Основной закон динамики поступательного движения.
- •Работа постоянной силы. Кинетическая энергия. Связь приращения кинетической энергии с работой силы.
- •Консервативная сила. Потенциальная энергия. Потенциальная энергия и ее связь с консервативной силой. Работа консервативной силы. Закон сохранения механической энергии.
- •Момент импульса для материальной точки. Момент импульса материальной точки массой m, движущейся с постоянной по величине скоростью V по окружности радиуса r.
- •Момент силы и момент импульса частицы относительно полюса. Уравнение моментов относительно полюса. Момент импульса и момент силы относительно оси. Уравнение моментов относительно оси.
- •Момент инерции тела относительно неподвижной оси. Теорема Штейнера.
- •Момент инерции. Момент инерции обруча относительно оси, перпендикулярной плоскости обруча и проходящей через центр масс обруча.
- •Момент инерции. Момент инерции стержня относительно оси, перпендикулярно стержню и проходящий через центр масс стержня.
- •Основной закон динамики вращательного движения.
- •Закон сохранения момента импульса.
- •Кинетическая энергия вращающегося тела. Работа внешних сил при вращении твердого тела вокруг неподвижной оси. Кинетическая энергия твердого тела при плоском вращении.
- •Работа при перемещении заряда в электростатическом поле.
- •Теорема о циркуляции вектора напряженности электрического поля.
- •Поток вектора напряженности электростатического поля через некоторую поверхность. Теорема Гаусса для напряженности электрического поля.
- •Теорема Гаусса для электростатического поля в вакууме. Определение напряженности поля точечного заряда с помощью теоремы Гаусса.
- •Теорема Гаусса для электростатического поля. Расчет напряженности поля равномерно заряженной сферы радиуса r с известной поверхностной плотностью заряда
- •Теорема Гаусса для электростатического поля. Расчет поля бесконечного прямолинейного провода, заряженного с линейной плотностью заряда .
- •Теорема Гаусса для электростатического поля в вакууме. Расчет поля равномерно заряженного по объему шара с известной объемной плотностью заряда
- •Энергия электрического поля и ее локализация в пространстве. Выразить энергию заряженного конденсатора через напряженность конденсатора.
- •Магнитное поле. Магнитная индукция. Силовые линии магнитного поля. Сила Лоренца.
- •Закон Био-Савара-Лапласа для магнитной индукции поля, создаваемого элементом тока. Принцип суперпозиции магнитных полей.
- •Магнитное поле, создаваемое равномерно движущимся зарядом.
- •Сила Лоренца. Движение заряда по окружности в постоянном магнитном поле.
- •Магнитное поле кругового тока. Магнитное поле в центре кругового тока.
- •Магнитное поле прямого бесконечного проводника с током.
- •Сила Ампера. Взаимодействие параллельных проводников с током.
- •Теорема о циркуляции вектора магнитной индукции. Поток магнитной индукции.
- •Явление электромагнитной индукции. Правило Ленца. Закон электромагнитной индукции Фарадея.
- •Электродвижущая сила, возникающая в проводнике, движущемся в магнитном поле.
- •Явление самоиндукции. Электродвижущая сила самоиндукции. Индуктивность контура.
- •Энергия магнитного поля. Индуктивность соленоида. Энергия магнитного поля в соленоиде.
Работа постоянной силы. Кинетическая энергия. Связь приращения кинетической энергии с работой силы.
Механическая работа — это физическая величина, являющаяся скалярной количественной мерой действия силы или сил на тело или систему, зависящая от численной величины и направления силы (сил) и от перемещения точки (точек) тела или системы. При прямолинейном движении одной материальной точки и постоянном значении приложенной к ней силы работа (этой силы) равна произведению величины проекции вектора силы на направление движения и величины совершённого перемещения
Кинетическая энергия — скалярная функция, являющаяся мерой движения материальной точки и зависящая только от массы и модуля скорости материальных точек, образующих рассматриваемую физическую систему, энергия механической системы, зависящая от скоростей движения её точек в выбранной системе отсчёта. Часто выделяют кинетическую энергию поступательного и вращательного движения. Более строго, кинетическая энергия есть разность между полной энергией системы и её энергией покоя; таким образом, кинетическая энергия — часть полной энергии, обусловленная движением. Для кинетической энергии формула рассчитывается следующей образом: A =Fs=mas=m*v/t*vt/2=(mv^2)/2 или Eк=(mv^2)/2, где Eк - кинетическая энергия тела, m - масса тела, v - скорость тела. Для абсолютно твёрдого тела полную кинетическую энергию можно записать в виде суммы кинетической энергии поступательного и вращательного движения: Eк=((mv^2)/2)+((Iw^2)/2),{\displaystyle T={\frac {mv^{2}}{2}}+{\frac {{\mathcal {I}}{\vec {\omega }}^{2}}{2}},} где: m{\displaystyle \ m} — масса тела, v{\displaystyle \ v} — скорость центра масс тела, I{\displaystyle {\mathcal {I}}} — момент инерции тела,{\displaystyle {\vec {\omega }}} w(омега)— угловая скорость тела. Работа всех сил, действующих на материальную точку при её перемещении, идёт на приращение её кинетической энергии: A12=Eк2-Eк1
Консервативная сила. Потенциальная энергия. Потенциальная энергия и ее связь с консервативной силой. Работа консервативной силы. Закон сохранения механической энергии.
В физике консервативные силы (потенциальные силы) — это силы, работа которых не зависит от вида траектории, точки приложения этих сил и закона их движения, и определяется только начальным и конечным положением этой точки. Равносильным определением является и следующее: консервативные силы — это такие силы, работа которых по любой замкнутой траектории равна 0. Примерами консервативных сил являются: сила тяжести, сила упругости, сила кулоновского (электростатического) взаимодействия. Примером неконсервативной силы является сила трения. Если в системе действуют только консервативные силы, то механическая энергия системы сохраняется.
Потенциальная сила F, действующая на материальную точку, равна взятому с обратным знаком градиенту потенциальной энергии ЕП этой точки в поле силы F: F=-gradEП, так что проекции на оси координат равны: Fx=-dEп/dx, Fy=-dEп/dy, Fz=-dEп/dz. Если тела, составляющие замкнутую механическую систему, взаимодействуют между собой только посредством сил тяготения и упругости, то работа этих сил равна изменению потенциальной энергии тел, взятому с противоположным знаком: A = –(Eр2 – Eр1). По теореме о кинетической энергии эта работа равна изменению кинетической энергии тел: A=Ek2-Ek1. Следовательно, Ek1+Eп1=Eк2+Еп2 Закон сохранения механической энергии: Сумма кинетической и потенциальной энергии тел, составляющих замкнутую систему и взаимодействующих между собой посредством сил тяготения и сил упругости, остается неизменной. Закон сохранения энергии в механических процессах является следствием законов Ньютона. Сумму E = Ek + Ep называют полной механической энергией. Закон сохранения механической энергии выполняется только тогда, когда тела в замкнутой системе взаимодействуют между собой консервативными силами, то есть силами, для которых можно ввести понятие потенциальной энергии.
