- •1/15/23. В чем заключается главная трудность, связанная с использованием акселерометра для оценки относительного положения? Что является причиной и следствием этой проблемы?
- •2/16/25/ Объясните разницу между отслеживанием позиции и глобальной локализацией. Приведите примеры использования позиции и глобальной локализации.
- •3/17/26. Можно ли использовать глобальные методы планирования с датчиком обратной связи. Если да, то как? Приведите примеры использования глобальных методов планирования с датчиком обратной связи.
- •4/27. В чем разница между проприоцептивными и экстериоцептивными датчиками? Приведите примеры применения проприоцептивных и экстериоцептивных датчиков.
- •6. Назовите движущее использование датчиков для роботов. Приведите примеры применения этих датчиков.
- •7/. Slam (Одновременная локализация и составлению карт) является решением так называемой задачи курицы и яйца. Кратко опишите эту задачу?
- •8. Ультразвуковой датчик. Что он измеряет? Как он измеряет? Опишите о датчике и его плюсах и минусах.
3/17/26. Можно ли использовать глобальные методы планирования с датчиком обратной связи. Если да, то как? Приведите примеры использования глобальных методов планирования с датчиком обратной связи.
Традиционно, задачи навигации включают в себя две подзадачи, которые можно разделить во времени: локализация в пространстве и планирование пути. Локализация заключается в оценке текущего положения робота относительно определенных известных опорных пунктов окружающей среды, заданные в абсолютных координатах. Планирование заключается в поиске, по возможности, кратчайшего маршрута и продвижении в пункт назначения.
В целенаправленной навигации принято выделять минимум три иерархических уровня представления проблемы:
проход препятствий
локальную навигацию
глобальное планирование маршрута.
Алгоритмы глобального планирования используют информацию о всем пространстве, чтобы определить участки, по которым возможно движение, и затем выбрать оптимальный путь. Для задачи планирования найдены точные алгоритмические решения. Однако точные алгоритмы имеют большую вычислительную сложность и, кроме того, требуют точных алгебраических моделей помех. Эвристические методы не гарантируют полноты поиска и оптимальности даже при глобальном планировании, когда доступна вся информация об окружающей среде. Однако эвристические глобальные методы планирования уменьшают сложность задачи и чувствительность к ошибкам в данных различными способами. Используя генетические алгоритмы можно найти оптимальный маршрут с учетом минимального времени движения с различными сценариями реальных условиях дорожного движения и разной скоростью движения транспортного средства.
Неотъемлемой частью любой системы навигации является желание достичь пункта назначения и при этом не заблудиться, не врезаться в какой-нибудь из объектов[10]. Также могут быть и другие ограничения на тот или иной маршрут, например: ограничение скорости, или зоны неопределенности, где теоретически, конечно, можно проложить маршрут, но не желательно. Часто маршрут для робота планируется автономно, что может привести робота в пункт назначения при условии, что окружающая среда прекрасно известна и стационарна, поэтому робот может отлично отслеживать окружающую среду. Но при решении навигационных задач в реальной среде соблюдение всех этих условий практически невозможно[11]. Таким образом, ограниченность методов планирования автономного движения привело исследователей к изучению онлайн-планирования — это планирование опирается на знания, полученные от зондирования местной окружающей среды для обработки неизвестных препятствий по мере того, как робот будет проходит путь в пространстве.
Общая постановка задачи планирования пути мобильного робота:
Применение эволюционных алгоритмов в задачах навигации
Выбор генетического алгоритма для реализации эволюционного навигатора (ЭН)
Описание алгоритма эволюционного навигатора и пополнение базы данных алгоритмов новосозданным алгоритмом.
Эволюционный алгоритм, описанный здесь, является эволюционным навигатором, что сочетает в себе автономный режим и режим онлайн планирования с применением простой карты высокой точности и эффективного алгоритма планирования[12]. В первой части алгоритма автономный планировщик глобально ищет оптимальные пути от самого начала и до места назначения, а вторая часть онлайн планировщика отвечает за обработку возможных столкновений или ранее неизвестных объектов, заменив часть первоначального глобального пути на оптимальный подпуть. Важно отметить, что обе части ЭН используют один и тот же эволюционный алгоритм, но с разными значениями различных параметров. ЭН сначала считывает карту и получает исходное и целевое места нахождения. Затем автономный эволюционный алгоритм (АЭА) генерирует близкий к оптимальному глобальный путь: это частично-прямолинейный путь, состоящий из допустимых узловых точек или узлов.
Другие проблемы развития автономных роботов[править | править вики-текст]
Проблемы прямой опасности людям от машин[править | править вики-текст]
С неустанным развитием робототехники, роботы и другие автоматизированные системы становятся все более умными и все более развитыми. В то же время на них перекладывают все больше обязанностей: вождение машины, помощь инвалидам и престарелым людям, охрана дома и, вероятно, даже участие в военных операциях. Возникает проблема полного доверия роботам: нет уверенности, что роботы никогда не примут такого решения, что нанесет человеку вред.[13]
В первую очередь проблема касается боевых роботов. В современных армиях роботы применяют, в основном, для обезвреживания мин и бомб, а также для ведения разведки, однако, все чаще их используют как полноценные боевые машины, оснащенные современным вооружением. В это время, как правило, боевым роботом управляет живой оператор, который несет ответственность за все действия вверенного ему устройства. Однако, если предоставить возможность машине самостоятельно принимать решение о выборе цели, ситуация полностью меняется. Современная война должна проходить таким образом, чтобы впоследствии можно было выявить ответственных за смерть мирных людей, погибших в ходе конфликта, и определить степень их вины. Поскольку убийства, совершенные автономными роботами, нельзя оценить с этой точки зрения — понятие «ответственность» к ним в принципе неприменимо. Поэтому разработка таких машин должна быть запрещена из этических соображений. Тем временем автономные машины, способные убивать, уже существуют. Как пример можно привести беспилотные самолеты-разведчики, оснащенные ракетным вооружением и запрограммированные на уничтожение целей, которые имеют набор определенных признаков. Такие аппараты широко использовали военные США в ходе конфликтов на Ближнем Востоке.[14]
Прямым следствием отсутствия человеческих черт является возможность использования роботов в операциях по подавлению народных волнений и угнетению прав человека. Если только появится такая возможность — непременно роботы будут использованы для незаконного захвата и удержания власти. Международное право не гарантирует защиты от агрессии со стороны людей без морали и наделенных властью. Правозащитники считают «бездушные машины» идеальным инструментом для подавления бунтов, репрессий и т. д., поскольку, в отличие от большинства людей, робот не станет обсуждать приказ и выполнит все, что ему укажут. Сам робот не является разумным существом, способным понять суть приказа и остановиться, а применение взысканий в отношении военных, которые послали его на задание — бессмысленно, так же, как и наказывать разработчиков аппаратной и программной части робота.[15]
Уэнделл Уолла, специалист по этике из Йельского университета, и историк и философ когнитивной науки Колин Аллен, который работает в Университете штата Индиана, говорят о неотвратимости всеобъемлющего внедрения автономных роботов в нашу жизнь. Как частичное решение проблемы опасности автономных роботизированных систем для человека, они предлагают новые законы робототехники, приняв которые мы могли бы уменьшить опасность от нашего высокотехнологичного творения:[16]
1. Расположение роботов в местах где изначально низок риск развития опасных ситуаций:
Прежде чем ставить роботам ту или иную задачу, необходимо убедиться, что всем компьютерам и роботам никогда не придется принимать решения, последствия которых не могут быть предусмотрены заранее. Место, где работают роботы, а также средства, которыми они работают — должны делать невозможным даже случайный вред постороннему человеку.
2. Не давать роботам оружие:
Хотя уже слишком поздно пытаться остановить строительство роботов как оружия, но еще не слишком поздно ограничить их применение только с определенным типом оружия — сети, дротики со снотворным и т. д., или ограничить ситуации, в которых оружие роботов допустимо применять.
3. Дать роботам законы робототехники как у Азимова:
Хотя правила Азимова плохо применимы из-за обилия сложности в определении морали: добра, зла, ценности, приоритетов и тому подобного — тем не менее, правила могут успешно ограничить поведение роботов, поставить их в очень ограниченные условия.
4. В законы робототехники должны быть заложены определенные принципы, а не простые инструкции:
Придать роботам мотивацию, например сделать приоритетом «наибольшее благо для наибольшего числа людей» — скорее всего, это будет безопаснее, чем закладывание упрощенных правил.
5. Обучение роботов, как детей вместо загрузки готового базового пакета алгоритмов:
У машин, которые учатся и постепенно, как бы, «взрослеют», можно развить понимание тех действий, которые люди считают правильными и неправильными. Программирование нейропроцесоров, перспективных баз для создания новейших автономных роботов, предусматривает только такой подход в противовес алгоритмизованному закладыванию наборов инструкций. Вероятность успеха этого положения достаточно перспективна, хотя эта стратегия требует нескольких технологических прорывов. В настоящее время инструментов, способных обучать роботов подобно людям, почти не существует.
6. Наделить машины эмоциями — искусственной психикой:
Человеческие способности, такие как эмпатия, эмоциональность и способность читать невербальные сигналы социального общения, должны дать роботам гораздо большие способности к взаимодействию с людьми. Работа в этом направлении уже началась, планируется, что домашние роботы в будущем будут обладать такими «эмоциональными» свойствами. Вероятность успеха этого подхода достаточно высока. Развитие эмоционально чувствительных роботов, безусловно, поможет реализации трех предыдущих законов робототехники. Большую часть информации мы используем, чтобы сделать выбор и сотрудничать с другими людьми. Выбор происходит из-за наших эмоций, а также, из-за нашей способности читать жесты и намерения, представлять события с точки зрения другого человека.
