- •Н.Н.Богдашев физическая и коллоидная химия курс лекций
- •Часть I. Физическая химия
- •Оглавление
- •Предисловие
- •Введение
- •1. Предмет физической химии, её место среди естественнонаучных
- •2. Краткий исторический очерк развития физической химии
- •3. Методы физической химии
- •Глава 1
- •И первое начала термодинамики
- •1.1. Краткий исторический очерк
- •1.2. Основные понятия и величины
- •1.3. Нулевое начало термодинамики
- •1.4. Первое начало термодинамики
- •1.5. Энтальпия
- •Глава 2 термохимия
- •2.1. Термохимия, её задачи и значение
- •2.2. Краткий исторический очерк
- •2.3. Калориметрические измерения
- •2.4. Тепловой эффект химической реакции
- •Соотношение между тепловыми эффектами реакций
- •2.4.2. Тепловые эффекты, используемые при термохимических
- •2.5. Стандартные состояния. Стандартные условия
- •2.6. Термохимические уравнения
- •2.7. Закон Гесса
- •2.8. Зависимость теплового эффекта реакции от температуры.
- •2.9. Теплота растворения
- •2.10. Теплота нейтрализации
- •Глава 3 второе и третье начала термодинамики
- •3.1. Второе начало термодинамики
- •3.1.1. Статистический характер второго начала термодинамики
- •3.2. Обратимые и необратимые процессы. Самопроизвольные
- •3.3. Факторы интенсивности и экстенсивности
- •3.4. Термодинамическая вероятность системы
- •3.5. Энтропия
- •3.5.1. Энтропия со статистической точки зрения
- •3.5.2. Энтропия с термодинамической точки зрения
- •3.6. Расчёт изменения энтропии для различных процессов
- •3.6.1. Изотермическое расширение идеального газа
- •3.6.2. Изотермические фазовые переходы (плавление, кипение, сублимация)
- •3.6.3. Неизотермический физический процесс (нагревание или охлаждение
- •3.6.4. Химические реакции
- •3.7. Третье начало термодинамики. Постулат Планка.
- •3.8. Энергия Гельмгольца. Энергия Гиббса. Критерий достижения
- •3.9. Свободная и связанная энергия
- •3.10. Максимальная работа процесса и химическое сродство
- •3.11. Уравнение максимальной работы (уравнение Гиббса
- •Глава 4 термодинамика химического равновесия
- •4.1. Химическое равновесие
- •4.2. Краткий исторический очерк
- •4.3. Константа равновесия
- •4.4. Расчёты с применением констант равновесия
- •4.4.1. Определение направления протекания обратимых реакций
- •4.4.2. Расчёт равновесного выхода продуктов реакции
- •4.5. Факторы, влияющие на равновесие. Принцип Ле-Шателье
- •4.5.1. Влияние на равновесие начального состава реакционной
- •4.5.2. Влияние температуры на равновесие. Уравнения изобары
- •4.5.3. Влияние на равновесный выход изменения объёма
- •4.6. Способы вычисления констант равновесия
- •4.7. Химическое равновесие в гетерогенных системах
- •Глава 5 термодинамика фазового равновесия
- •5.1. Краткий исторический очерк
- •5.2. Фазовые переходы
- •5.3. Основные понятия
- •5.4. Правило фаз
- •5.5. Общее условие фазового равновесия. Химический потенциал
- •Глава 6 фазовые равновесия в однокомпонентных системах
- •6.1. Связь между давлением и температурой фазовых переходов.
- •6.1.1. Процесс кипения. Уравнение Клаузиуса - Клапейрона
- •6.2. Физико-химический анализ. Фазовые диаграммы
- •6.3. Диаграмма состояния воды
- •Глава 7 фазовые равновесия в двухкомпонентных системах. Растворы неэлектролитов
- •7.1. Растворы. Основные понятия
- •7.2. Значение растворов для фармации
- •7.3. Концентрация. Способы выражения концентрации
- •7.4. Двухкомпонентные растворы летучих жидкостей. Закон Рауля
- •7.5. Отклонения от закона Рауля
- •7.6. Первый закон Коновалова
- •7.7. Диаграммы кипения
- •7.8. Второй закон Коновалова
- •7.9. Правило рычага
- •7.10. Перегонка бинарных жидкостных смесей
- •7.11. Разделение азеотропных смесей
- •7.12. Ограниченно растворимые жидкости
- •7.13. Диаграммы растворения. Правило Алексеева
- •7.13.1. Системы с верхней критической температурой растворения
- •7.13.2. Системы с нижней критической температурой растворения
- •7.13.3. Системы с верхней и нижней критическими температурами
- •7.14. Растворы нелетучих веществ. Коллигативные свойства
- •7.15. Понижение температуры замерзания растворов. Криометрия
- •7.16. Повышение температуры кипения растворов. Эбулиометрия
- •7.17. Осмос
- •7.17.1. Осмотическое давление
- •7.17.2. Осмометрия
- •7.17.3. Значение осмотических явлений
- •7.18. Несмешивающиеся жидкости
- •7.19. Перегонка с водяным паром
- •7.20. Диаграммы плавления. Термический анализ
- •7.20.1. Системы, состоящие из неизоморфных веществ
- •7.20.2. Системы, состоящие из веществ, образующих химические
- •7.20.3. Системы, состоящие из веществ, образующих твёрдые
- •7.21. Правило рычага для конденсированных систем
- •Глава 8 фазовые равновесия в трёхкомпонентных системах. Экстракция
- •8.1. Третий компонент в двухслойной жидкой системе. Закон
- •8.2. Жидкостная экстракция
- •Глава 9 электрохимия. Растворы электролитов. Кондуктометрия
- •9.1. Предмет электрохимии и её значение для фармации, медицины
- •9.2. Краткий исторический очерк
- •9.3. Коллигативные свойства растворов электролитов
- •9.4. Буферные растворы. Буферная ёмкость
- •9.5. Электрическая проводимость растворов. Закон Кольрауша
- •9.6. Кондуктометрические измерения
- •9.6.1. Прямая кондуктометрия
- •9.6.2. Кондуктометрическое титрование
- •Глава 10 электродные процессы и электродвижущие силы
- •10.1. Основные понятия и величины
- •10.2. Электроды первого и второго рода. Газовые электроды
- •10.3. Термодинамика гальванического элемента
- •10.4. Формула записи гальванического элемента
- •10.5. Уравнение Нернста
- •10.6. Контактный и диффузионный потенциалы
- •Глава 11 потенциометрические измерения
- •11.1. Потенциометрия
- •11.2. Потенциометрическое определение рН растворов.
- •11.3. Потенциометрическое определение концентрации
- •11.4. Определение констант равновесия электрохимических
- •Глава 12 формальная и молекулярная кинетика
- •12.1. Предмет химической кинетики и её значение для фармации,
- •12.2. Краткий исторический очерк
- •12.3. Кинетическая классификация химических реакций. Порядок
- •12.4. Скорость химической реакции. Время полупревращения
- •12.5. Закон действующих масс. Константа скорости
- •12.6. Расчёт констант скорости для реакций различных порядков
- •12.6.1. Реакции первого порядка
- •12.6.2. Реакции второго порядка
- •12.7. Определение порядка реакции
- •12.8. Механизмы химических реакций
- •12.9. Влияние температуры на скорость реакции
- •12.9.1. Правило Вант-Гоффа
- •12.9.2. Теория активных столкновений. Уравнение Аррениуса
- •12.10. Теория переходного состояния. Активированный комплекс
- •12.11. Гетерогенные реакции
- •Глава 13 катализ
- •13.1. Основные понятия. Значение катализа для медицины,
- •13.2. Краткий исторический очерк
- •13.3. Виды катализа
- •13.4. Механизм действия катализаторов
- •13.5. Гомогенный катализ
- •13.6. Гетерогенный катализ
- •13.7. Теории гетерогенного катализа
- •13.7.1. Мультиплетная теория
- •13.7.2. Теория активных ансамблей
- •13.7.3. Электронная теория
- •13.8. Ингибиторы
- •Глава 14 фотохимические реакции
- •14.1. Значение фотохимических реакций
- •14.2. Первичные и вторичные фотохимические процессы
- •14.3. Законы фотохимии
- •14.4. Фотохимическая эффективность
- •14.5. Фотосенсибилизация
- •Использованная литература
- •Предметный указатель
- •Часть I - физическая химия.
- •357532 Г. Пятигорск, пр. Калинина, 11
7.13. Диаграммы растворения. Правило Алексеева
Зависимость взаимной растворимости жидкостей от температуры принято изображать на диаграммах состояния, называемых диаграммами растворения (или растворимости). Каждая такая диаграмма строится в координатах “температура - состав” при заданном постоянном давлении.
7.13.1. Системы с верхней критической температурой растворения
Типичная диаграмма растворения для таких систем показана на рис. 7.8.
Т
Ткр
Т1
Т
Ткр Т3
Т2
Т1
y
p
= const
k
1
n
m
2
p
q
А
a
p`
m`
х n`
q`
b
В
состав,
мол. доли
Рис.
7.8. Диаграмма растворения для системы
с верхней
критической
температурой растворения
Линия akb (линия расслоения) разделяет два фазовых поля: вне кривой поле 1 - поле гомогенных бивариантных систем и внутри кривой поле 2 - поле гетерогенных моновариантных систем, состоящих из двух сопряжённых фаз. Составы сопряжённых растворов можно определить с помощью коннод, а именно по точкам пересечения их с линией расслоения. Так, при температуре Т1 коннода pq показывает, что сопряжённые растворы имеют составы p` и q`, а при температуре Т2 - коннода mn отвечает составам m` и n`. Точки p` и m` соответствуют растворам вещества В в веществе А, а точки n` и q` - растворам А в В. Видно, что чем ниже температура, тем больше различие составов сопряжённых фаз. Причём эти составы не зависят от абсолютного содержания компонентов в смеси, а зависят только от температуры.
Нагревание системы отображается перемещением фигуративной точки, отвечающей общему составу системы, вверх. Так, например, для системы с общим составом х - движением по линии ху. Пока фигуративная точка находится ниже кривой расслоения, система гетерогенна и состоит из двух фаз. При температуре Т1 система распадается на сопряжённые растворы с составами p` и q`, при температуре Т2 - на растворы с составами m` и n`. По мере повышения температуры составы сопряжённых фаз всё более сближаются друг с другом, и когда фигуративная точка достигает линии расслоения при температуре Т3, они становятся одинаковыми. При этом система становится гомогенной (происходит гомогенизация), так как выше этой температуры наступает полное смешивание компонентов. Температура Т3 называется температурой гомогенизации. Выше Т3 система будет оставаться гомогенной вплоть до температуры, при которой начнётся кипение.
Охлаждение, отображаемое движением фигуративной точки вниз по линии ух, сопровождается обратными явлениями. При достижении температуры Т3 (теперь её логичнее назвать температурой гетерогенизации) происходит гетерогенизация - разделение гомогенного раствора на две сопряжённые фазы. Дальнейшее охлаждение (вплоть до отвердевания) приводит к перераспределению компонентов между сопряжёнными растворами таким образом, что их составы всё более отличаются друг от друга.
Точка k, находящаяся в максимуме кривой расслоения, отвечает верхней критической температуре растворения Ткр. Выше этой температуры системы с любым соотношением компонентов А и В находятся в гомогенном состоянии. При температурах, лежащих ниже КТР, состояние системы будет зависеть от её состава. Например, при температуре Т1 в области концентрации вещества В от 0 до р` система гомогенна. Если к ней добавить какое-то количество В, то фигуративная точка, передвигающаяся при этом по горизонтальной линии - изотерме Т1 Т1, попадёт в гетерогенную область диаграммы растворения, что отвечает расслоению системы на два сопряжённых раствора с составами p` и q`, причём подавляющая часть системы находится в виде фазы p. Дальнейшее увеличение содержания компонента В в системе приводит к изменению массы каждой из сопряжённых фаз - масса фазы p` уменьшается, а масса фазы q` увеличивается. Составы же обеих фаз остаются неизменными при данной температуре. Когда содержание компонента В в общем составе системы превысит q`, фаза p` исчезает, фигуративная точка выходит в гомогенную область и вновь наступает полная смешиваемость компонентов.
Составы сопряжённых растворов и критическая температура растворения находятся между собой в определённой зависимости, которая описывается правилом В.Ф.Алексеева (1876):
Середины коннод, соответствующих различным температурам, лежат на одной прямой, идущей от критической точки.
С учётом того, что середина конноды отвечает среднему арифметическому из состава сопряжённых растворов, правило Алексеева может быть сформулировано и так:
Среднее арифметическое из состава равновесных жидких фаз является линейной функцией температуры; точка пересечения этой линии с кривой расслоения отвечает критической температуре растворения.
Если кривая расслоения в области критической температуры растворения не имеет чётко выраженного максимума, КТР может быть определена с помощью правила Алексеева, как показано на рис. 7.9.
Как уже говорилось, конноды pq, mn и rs, являющиеся отрезками изотерм соответственно при Т1, Т2 и Т3, позволяют определить составы сопряжённых растворов, находящихся в равновесии при этих температурах: это соответственно p` и q`, m` и n`, r` и s`. Точки a, b и с, являющиеся геометрическими серединами коннод, отражают среднее арифметическое из составов сопряжённых растворов. Как видно, они лежат на прямой линии lk, которая пересекает кривую расслоения в точке максимума, соответствующей КТР.
Т
Ткр
Т3
Т2
Т1
Т
Ткр
Т3
Т2
Т1
p
= const
k
c
s
r
b
n
m
a
q
p
l
А
p`m`r`
s`n`q`
В
состав,
мол. доли
Рис.
7.9. Иллюстрация правила Алексеева
на
диаграмме растворения для системы с
верхней КТР
