- •Основные условные обозначения сокращения и индексы Основные условные обозначения
- •Основные сокращения
- •Индексы
- •Введение
- •1. Физиологические основы высотных полетов
- •1.1. Основные свойства земной атмосферы
- •1.2. Основы физиологии дыхания человека
- •1.3. Влияние пониженного давления на организм человека
- •1.4. Воздействие динамических факторов на организм человека
- •2. Бортовое кислородное оборудование
- •2.1. Назначение и требования, предъявляемые к кислородному оборудованию самолетов
- •2.2. Источники кислорода
- •2.3. Классификация кислородных систем и приборов
- •2.4. Кислородные приборы с непрерывной подачей кислорода
- •2.5. Кислородные приборы с периодической подачей кислорода
- •2.6. Кислородные маски
- •2.7. Личное снаряжение летчика
- •2.8. Запас кислорода на борту самолета
- •3. ГермокабиНы самолетов
- •3.1. Схемы герметических кабин
- •3.2. Требования, предъявляемые к атмосфере кабины самолета
- •3.3. Характеристики герметичности кабины
- •3.4. Элементы конструкции герметических кабин
- •3.5. Проверка герметичности кабин
- •3.6. Способы регулирования давления воздуха в гк
- •3.7. Источники наддува гк
- •3.8. Программы изменения давления воздуха в гк самолетов
- •3.9. Агрегаты оборудования герметической кабины
- •3.10. Сетевые регуляторы давления
- •3.11. Защитные устройства гермокабины (гк)
- •4. Системы кондиционирования воздуха на самолетах
- •4.1. Назначение систем кондиционирования воздуха
- •4.2. Скв на легком скоростном самолете
- •4.3. Тепловой режим кабин и отсеков ла
- •4.4. Теплоизоляция стенок кабин
- •4.5. Способы обогрева кабин
- •4.6. Основные элементы авиационных скв, их устройство и принцип действия
- •4.6.1. Теплообменные аппараты
- •4.6.2. Осушение воздуха в системах кондиционирования
- •4.6.3. Увлажнители воздуха в системе кондиционирования
- •4.7. Регулирование температуры воздуха в кабине
- •5. Гидравлические системы самолетов
- •5.1. Общие положения и назначение гидравлических систем самолетов
- •5.2. Роторные насосы
- •5.2.1. Пластинчатые насосы
- •5.2.2. Шестеренные насосы
- •5.2.3. Аксиально - роторные насосы
- •5.3. Гидравлические аккумуляторы
- •5.4. Силовые приводы
- •5.5. Гидравлические следящие устройства
- •5.6. Агрегаты регулирования потока рабочего тела по расходу и давлению
- •5.7. Методы разгрузки насосов
- •6. Противопожарное оборудование
- •6.1. Особенности возникновения пожара
- •6.2. Меры пожарной безопасности
- •6.4. Способы пожаротушения и возможности их применения в салонах летательных аппаратов
- •6.5. Системы защиты ла от взрыва
- •7. Противообледенительное оборудование
- •7.1. Основные факторы обледенения
- •7.2. Виды и формы льдообразований
- •7.3. Влияние обледенения на летные характеристики и безопасность полетов ла
- •7.4. Сигнализаторы обледенения
- •7.5. Способы и системы защиты ла от обледенения
- •7.5.1. Механические противообледенительные системы
- •7.5.2. Жидкостная противообледенительная система.
- •7.5.3. Тепловые пос
- •8. Список литературы
- •Оглавление
5.6. Агрегаты регулирования потока рабочего тела по расходу и давлению
К этой группе агрегатов относятся распределительные устройства для изменения потока рабочего тела по направлению и расходу, а также регуляторы давления. Эти агрегаты являются обязательными элементами гидравлической системы. Они поддерживают заданный режим работы потребителя и предохраняют систему от повышенных давлений, обеспечивая ее надежность.
Распределительные устройства разнообразны по своему составу и отличаются друг от друга быстродействием, усилием управления, одновременностью управления разным числом потоков.
К ним относятся электрогидравлические краны, золотниковые и клапанные распределители, распределители типа струйная трубка или сопло-заслонка.
|
Рис. 5.13. Схема распределителя с цилиндрическим золотником: 1 – корпус; 2 – гильза; 3 – плунжер (золотник); 4 – уплотнения |
На рис. 5.13 представлена схема распределителя с цилиндрическим золотником. Распределитель показан в нейтральном положении. Перемещение золотника 3 вправо или влево открывает каналы питания и слива распределителя. Как следует из схемы, усилие управления в основном определяется силами трения плунжера по корпусу (гильзе).
|
Рис. 5.14. Схема золотникового распределителя с серводействием (распределитель показан в рабочем положении): 1 – рабочий золотник; 2– сервозолотник; 3 – корпус; 4 – пружина |
Основная трудность при изготовлении золотниковых распределителей обусловлена сложностью обработки с высокой точностью и контроля внутренней поверхности гильзы. В этом смысле представляют интерес распределители с плоскими золотниками.
Распределители с плоскими золотниками.
|
Рис. 5.15. Схема распределителя с плоским золотником поворотного перемещения: 1,4 – уплотнения; 2 – подшипник; 3 – плунжер; 5 – пружина; 6 – плоский золотник; 7 – основание; 8 – штифт; 9 – корпус; 10 – каналы, подводящие жидкость в цилиндр; 11 – канал нагнетания; 12 – силовой цилиндр; 13 – каналы, отводящие жидкость из цилиндра; 14 – канал слива |
Подобные распределители отличаются высокой герметичностью при давлениях 25...30 МПа, малой вероятностью "заклинивания", относительно малой массой. Плоские золотники просты в изготовлении, могут иметь поступательное перемещение золотника и электромагнитное управление.
В тех случаях, когда главным требованием к распределителю является малая мощность управления и высокое быстродействие, целесообразно использовать распределители типа "струйная трубка" или "сопло-заслонка".
Принцип действия распределителя "струйная трубка" (рис. 5.16) основан на преобразовании кинетической энергии струи рабочего тела, вытекающего из струйной трубки 1, в потенциальную энергию давления в каналах 6 приемного блока 2. При нейтральном положении струйной трубки струя рабочего тела одинаково перекрывает каналы 6 приемного блока 2; давления в рабочих камерах силового цилиндра 3 одинаковы, поршень 5 неподвижен. При отклонении струйной трубки 1 относительно каналов 6 в ту или иную сторону возникает перепад давлений, под воздействием которого поршень 5 цилиндра 3 начнет перемешаться.
|
Рис. 5.16. Схема распределителя (усилителя мощности) "струйная трубка": 1 – струйная трубка; 2 – приемный блок; 3 – силовой цилиндр; 5 – поршень; 6 – каналы; 7 – сливной канал; 8 – канал давления |
Давление рабочего тела в струйной трубке обычно не превышает 10 МПа, расходы составляют 3...8 л/мин, диаметры струйной трубки 1...3 мм для жидкости и 0,3...1 мм для газа.
|
Рис. 5.17. Схема распределителя (усилителя мощности) "сопло-заслонка": 1 – электромеханический преобразователь; 2 – заслонка; 3 – сопло; 4 – силовой цилиндр; 5 – поршень; 6 – постоянный дроссель; I-I – обмотка подмагничивания; II-II – обмотка управления; III-III – обмотка осцилляции |
Распределители типа "струйная трубка" и "сопло-заслонка" обладают преимуществом:
- высокая чувствительность, малая инерционность, нулевая зона нечувствительности, малая мощность управления, большая рабочая частота переключения (десятки Гц), незначительные габаритные размеры и масса.
Однако они имеют большие расходы рабочего тела при отсутствии управляющего сигнала, что и обусловливает их низкий КПД (0,1...0,2).
Если распределитель "струйная трубка" практически не чувствителен к загрязнению рабочего тела, то распределитель "сопло-заслонка" требует его тщательной фильтрации.
К распределителям потока может быть отнесен и дозатор, который регулирует поток по объему, пропуская определенную его часть к потребителю, после чего подача жидкости прекращается. Таким образом, дозатор может работать как агрегат, предохраняющий гидросистему от полной потери рабочей жидкости в случае ее разгерметизации. Обычно дозатор устанавливается перед потребителем, работающим в особо нагруженных условиях (например, в тормозной системе, расположенной на опоре шасси, подверженной тряске и ударам со стороны взлетно-посадочной полосы). Жидкость, поступающая в корпус 1 дозатора (рис. 5.17а) при нормальной работе потребителя, проходит через отверстия 2 из полости А в полость В.
|
Рис. 5.17а. Схема дозирующего устройства: 1 – корпус; 2 – отверстия; 3 – жиклер (постоянный дроссель); 4 – клапан; 5 – пружина; 6 – поршень; А, В – полости дозатора |
