- •Основные условные обозначения сокращения и индексы Основные условные обозначения
- •Основные сокращения
- •Индексы
- •Введение
- •1. Физиологические основы высотных полетов
- •1.1. Основные свойства земной атмосферы
- •1.2. Основы физиологии дыхания человека
- •1.3. Влияние пониженного давления на организм человека
- •1.4. Воздействие динамических факторов на организм человека
- •2. Бортовое кислородное оборудование
- •2.1. Назначение и требования, предъявляемые к кислородному оборудованию самолетов
- •2.2. Источники кислорода
- •2.3. Классификация кислородных систем и приборов
- •2.4. Кислородные приборы с непрерывной подачей кислорода
- •2.5. Кислородные приборы с периодической подачей кислорода
- •2.6. Кислородные маски
- •2.7. Личное снаряжение летчика
- •2.8. Запас кислорода на борту самолета
- •3. ГермокабиНы самолетов
- •3.1. Схемы герметических кабин
- •3.2. Требования, предъявляемые к атмосфере кабины самолета
- •3.3. Характеристики герметичности кабины
- •3.4. Элементы конструкции герметических кабин
- •3.5. Проверка герметичности кабин
- •3.6. Способы регулирования давления воздуха в гк
- •3.7. Источники наддува гк
- •3.8. Программы изменения давления воздуха в гк самолетов
- •3.9. Агрегаты оборудования герметической кабины
- •3.10. Сетевые регуляторы давления
- •3.11. Защитные устройства гермокабины (гк)
- •4. Системы кондиционирования воздуха на самолетах
- •4.1. Назначение систем кондиционирования воздуха
- •4.2. Скв на легком скоростном самолете
- •4.3. Тепловой режим кабин и отсеков ла
- •4.4. Теплоизоляция стенок кабин
- •4.5. Способы обогрева кабин
- •4.6. Основные элементы авиационных скв, их устройство и принцип действия
- •4.6.1. Теплообменные аппараты
- •4.6.2. Осушение воздуха в системах кондиционирования
- •4.6.3. Увлажнители воздуха в системе кондиционирования
- •4.7. Регулирование температуры воздуха в кабине
- •5. Гидравлические системы самолетов
- •5.1. Общие положения и назначение гидравлических систем самолетов
- •5.2. Роторные насосы
- •5.2.1. Пластинчатые насосы
- •5.2.2. Шестеренные насосы
- •5.2.3. Аксиально - роторные насосы
- •5.3. Гидравлические аккумуляторы
- •5.4. Силовые приводы
- •5.5. Гидравлические следящие устройства
- •5.6. Агрегаты регулирования потока рабочего тела по расходу и давлению
- •5.7. Методы разгрузки насосов
- •6. Противопожарное оборудование
- •6.1. Особенности возникновения пожара
- •6.2. Меры пожарной безопасности
- •6.4. Способы пожаротушения и возможности их применения в салонах летательных аппаратов
- •6.5. Системы защиты ла от взрыва
- •7. Противообледенительное оборудование
- •7.1. Основные факторы обледенения
- •7.2. Виды и формы льдообразований
- •7.3. Влияние обледенения на летные характеристики и безопасность полетов ла
- •7.4. Сигнализаторы обледенения
- •7.5. Способы и системы защиты ла от обледенения
- •7.5.1. Механические противообледенительные системы
- •7.5.2. Жидкостная противообледенительная система.
- •7.5.3. Тепловые пос
- •8. Список литературы
- •Оглавление
3.10. Сетевые регуляторы давления
|
Рис. 3.11. Схема сетевого регулятора избыточного давления: 1 – заслонка; 2 – сильфон; 3 – шток сильфона; 4 – рычаг заслонки; 5 – мембрана чувствительного элемента; 6, 10 – пружины; 7 – температурный компенсатор; 8 – седло усилителя; 9 – дроссель; 11 – силовой шток. |
Командный механизм регулятора избыточного давления состоит из чувствительного элемента и усилителя. Чувствительный элемент состоит из мембраны 5, пружины 6, биметаллического компенсатора 7, предназначенного для компенсации тепловых изменений жесткости пружины и корпуса чувствительного элемента. При повышении температуры пластина компенсатора изгибается и поджимает пружину.
На любом установившемся режиме работы, т.е. при постоянном давлении р1 на входе в регулятор и постоянном расходе воздуха, действие давления р2 на выходе из регулятора на мембрану 5 командного механизма уравновешивается усилием пружины 6. При этом мембрана 5 образует определенный зазор над седлом 8. Воздух, проходящий через отверстие седла, частично сбрасывается через дроссельное отверстие 9 в атмосферу, а затем с давлением рупр поступает по трубке во внутреннюю полость сильфона 2 сервопривода. Величина рупр зависит от соотношения проходных сечений седла 8 и дросселя 9, обеспечивая постоянное усилие на мембрану 5. Действие давления рупр на сильфон уравновешивается пружиной 10, установленной между сильфоном и корпусом. Каждому значению величины рупр соответствует определенная длина сильфона 2, а, следовательно, положение заслонки 1 регулирующего органа агрегата. При повышении, например, давления р2 мембрана 5 прогибается. Проходное сечение между седлом 8 увеличивается, давление рупр повышается, сильфон 2 расширяется, поворачивает заслонку 1 на закрытие. В результате выходное давление р2 уменьшается. Регуляторы избыточного давления применяются, как правило, для защиты воздушных агрегатов от повышенного давления.
3.11. Защитные устройства гермокабины (гк)
|
Рис. 3.12. Защитные устройства герметических кабин: ИПК – избыточный предохранительный клапан; ВПК – вакуумный предохранительный клапан; КСД – клапан сброса давления; ОК – обратный клапан; ОД – ограничитель давления, АРД – автоматический регулятор давления |
Схема их установки показана на рис. 3.12.
1. Избыточный предохранительный клапан (ИПК) – рис. 3.13 – служит для защиты кабины от разрушения при чрезмерном повышении избыточного давления, которое может возникнуть при нарушении нормальной работы регулятора давления или резкого увеличения подачи воздуха в кабину. Таким образом, клапан выполняет функции регулятора избыточного давления, но отличается от него более высоким значением регулируемого параметра. Предохранительный клапан должен срабатывать при перепаде давления кабина – атмосфера, превышающем нормальное избыточное давление на 15...20%.
|
Рис. 3.13. Предохранительный клапан избыточного давления. 1 – тарелка; 2 – корпус; 3 – пружина; 4 – направляющая втулка |
Тарелка 1 клапана под действием этого перепада давлений сжимает пружину 2, клапан открывается и через него воздух поступает в кабину. Величина обратного перепада давлений для срабатывания клапана не должна превышать 1,33...2,67 кПа (10...20 мм рт.ст.).
|
Рис. 3.14.Схема вакуумного клапана: 1 – тарелка клапана; 2 – пружина |
|
Рис. 3.15. Клапан аварийного сброса давления для кабин малого объема: 1 – рукоятка; 2 – многоходовой винт; 3 – тарельчатый клапан |
Обратные клапаны предназначены для обеспечения заданного направления движения воздуха по магистралям СКВ. Они исключают утечки воздуха из системы и кабины в случае повреждения воздухопровода или в случае выхода из строя нагнетателя. Конструктивно обратные клапаны выполняются по различным схемам. Основным параметром, характеризующим качество клапана, является его гидравлическое сопротивление прямому току воздуха, величина которого не должна превышать 1,33...2,0 кПа.
Рис. 3.16 Рис. 3.17 |
Рис. 3.16. Обратный клапан лепесткового типа: 1 – ось; 2 – пружина; 3 – корпус; 4 – лепестки Рис. 3.17. Обратный клапан тарельчатого типа: 1 – корпус; 2 – сферическая тарелка; 3 – пружина; 4 – направляющая втулка. |
На рис. 3.17 показан обратный клапан тарельчатого типа. Клапан состоит из корпуса 1, сферической тарелки 2 со штоком, пружины 3 и направляющей втулки 4. На внешней стороне корпуса изображена стрелка, указывающая направление движения воздуха. При уменьшении перепада давления под действием пружины 3 тарелка 2 исключает обратное движение воздуха.
Контрольные вопросы для самопроверки
1. Каковы основные типы герметических кабин?
2. Каковы основные параметры воздуха, контролируемые в гермокабине?
3. Основные способы проверки гермокабин?
4. Объясните принципы работы регулятора давления кабины и сетевого регулятора давления.
5. Какие защитные устройства исключают возникновение аварийного превышения давления в гермокабине.
6. Какие основные законы изменения давления реализуются в герметических кабинах?
