- •Основные условные обозначения сокращения и индексы Основные условные обозначения
- •Основные сокращения
- •Индексы
- •Введение
- •1. Физиологические основы высотных полетов
- •1.1. Основные свойства земной атмосферы
- •1.2. Основы физиологии дыхания человека
- •1.3. Влияние пониженного давления на организм человека
- •1.4. Воздействие динамических факторов на организм человека
- •2. Бортовое кислородное оборудование
- •2.1. Назначение и требования, предъявляемые к кислородному оборудованию самолетов
- •2.2. Источники кислорода
- •2.3. Классификация кислородных систем и приборов
- •2.4. Кислородные приборы с непрерывной подачей кислорода
- •2.5. Кислородные приборы с периодической подачей кислорода
- •2.6. Кислородные маски
- •2.7. Личное снаряжение летчика
- •2.8. Запас кислорода на борту самолета
- •3. ГермокабиНы самолетов
- •3.1. Схемы герметических кабин
- •3.2. Требования, предъявляемые к атмосфере кабины самолета
- •3.3. Характеристики герметичности кабины
- •3.4. Элементы конструкции герметических кабин
- •3.5. Проверка герметичности кабин
- •3.6. Способы регулирования давления воздуха в гк
- •3.7. Источники наддува гк
- •3.8. Программы изменения давления воздуха в гк самолетов
- •3.9. Агрегаты оборудования герметической кабины
- •3.10. Сетевые регуляторы давления
- •3.11. Защитные устройства гермокабины (гк)
- •4. Системы кондиционирования воздуха на самолетах
- •4.1. Назначение систем кондиционирования воздуха
- •4.2. Скв на легком скоростном самолете
- •4.3. Тепловой режим кабин и отсеков ла
- •4.4. Теплоизоляция стенок кабин
- •4.5. Способы обогрева кабин
- •4.6. Основные элементы авиационных скв, их устройство и принцип действия
- •4.6.1. Теплообменные аппараты
- •4.6.2. Осушение воздуха в системах кондиционирования
- •4.6.3. Увлажнители воздуха в системе кондиционирования
- •4.7. Регулирование температуры воздуха в кабине
- •5. Гидравлические системы самолетов
- •5.1. Общие положения и назначение гидравлических систем самолетов
- •5.2. Роторные насосы
- •5.2.1. Пластинчатые насосы
- •5.2.2. Шестеренные насосы
- •5.2.3. Аксиально - роторные насосы
- •5.3. Гидравлические аккумуляторы
- •5.4. Силовые приводы
- •5.5. Гидравлические следящие устройства
- •5.6. Агрегаты регулирования потока рабочего тела по расходу и давлению
- •5.7. Методы разгрузки насосов
- •6. Противопожарное оборудование
- •6.1. Особенности возникновения пожара
- •6.2. Меры пожарной безопасности
- •6.4. Способы пожаротушения и возможности их применения в салонах летательных аппаратов
- •6.5. Системы защиты ла от взрыва
- •7. Противообледенительное оборудование
- •7.1. Основные факторы обледенения
- •7.2. Виды и формы льдообразований
- •7.3. Влияние обледенения на летные характеристики и безопасность полетов ла
- •7.4. Сигнализаторы обледенения
- •7.5. Способы и системы защиты ла от обледенения
- •7.5.1. Механические противообледенительные системы
- •7.5.2. Жидкостная противообледенительная система.
- •7.5.3. Тепловые пос
- •8. Список литературы
- •Оглавление
2.5. Кислородные приборы с периодической подачей кислорода
Бортовые кислородные приборы.
Основным и наиболее распространенным типом бортового кислородного прибора являются приборы с периодической подачей. В чистом виде принцип легочного автомата, т. е. подача по потребности во время фазы вдоха, применяется только до тех пор, пока «высота» в кабине не превышает 12 км и кислородная маска герметично прилегает к лицу. На больших высотах бортовой прибор с помощью дополнительных механизмов подает кислород непрерывно. Это повышает надежность питания кислородом и обеспечивает безопасность высотного полета.
Типовая принципиальная схема кислородного прибора типа легочного автомата приведена на рис. 2.12. Прибор действует следующим образом. Разрежение, возникающее в маске при вдохе, распространяется по шлангу в корпус прибора, эластичная мембрана 1 прогибается и нажимает на рычаг 2 легочного автомата. Рычаг 2 через звенья передачи открывает клапан 4, и кислород проходит к соплу инжектора 6 и одновременно к штуцеру индикатора. Струя кислорода, вытекающая из сопла 6, создает в корпусе инжектора разрежение и через обратный клапан 8 подсасывает наружный воздух, образуя кислородно-воздушную смесь. Состав смеси регулируется автоматически клапаном 9, связанным с пакетом анероидов 10. При увеличении высоты анероиды расширяются и уменьшают площадь проходного сечения для воздуха. На высоте около 9 км клапан 9 полностью закрывается, и в маску поступает чистый кислород. При желании летчик может прекратить подсос воздуха, повернув рукоятку 11. Это может понадобиться для десатурации или при появлении в кабине вредных примесей.
При выдохе давление в рабочей камере прибора увеличивается, мембрана 1 и рычаг 2 отклоняются влево, клапан 4 закрывается и подача кислорода прекращается до следующего вдоха.
|
Рис. 2.12. Принципиальная схема кислородного прибора – легочного автомата: 1 – мембрана; 2 – рычаг; 3, 5, 7, 15 – пружины; 4 – клапан; 6 – сопло инжектора; 8 – обратный клапан; 9 – клапан подсоса воздуха; 10 – пакет анероидов; 11 – ручной выключатель подсоса воздуха; 12 – диффузор инжектора; 13 – пакет анероидов механизма избыточного давления; 14 – колпачок; 16 – штуцер (сообщается с атмосферой) |
Чтобы уменьшить опасность кислородного голодания при негерметично надетой маске, прибор имеет дополнительный механизм, состоящий из анероидов 13, колпачка 14 и пружины 15. На высотах более 5 – 6 км анероиды расширяются и через колпачок 14 и пружину 15 начинают давить на мембрану. Если маска герметична и в ней на выдохе поддерживается подпор 0,35…0,40 кПа (35…40 мм вод. ст.), то сила внутреннего давления на мембрану превышает силу пружины 15, и во время фазы выдоха клапан 4 будет закрыт. Если же маска негерметична, то прибор обеспечит непрерывную подачу кислорода, как на фазе вдоха, так и на фазе выдоха, что видно по показаниям индикатора кислорода.
По описанной схеме выполняются бортовые кислородные приборы, предназначенные для полетов на высотах до 12 км.
Для получения необходимого парциального давления кислорода при полетах на больших высотах необходимо создать в легких избыточное давление кислорода.
Для обеспечения удовлетворительного снабжения кислородом организма человека кислородный прибор должен создавать под маской на высоте:
6...12 км – избыточное давление 0,29...0,39 кПа для исключения подсоса воздуха под маску;
13 км – избыточное давление 1,0 ... 1,2 кПа;
14 км – избыточное давление 1,8 ... 2,1 кПа;
15 км – избыточное давление 3,2 ... 3,4 кПа;
16 км – давление 4,4 ... 4,8 кПа;
17 км – давление 6,2 ... 6,6 кПа;
18 км – давление 7,4 ... 7,8 кПа.
|
Рис. 2.12а. Схема индикатора кислорода: 1 – упругая мембрана; 2 – латунные диски; 3 – рычажная система; 4 – сегменты; 5 – шкала указателя с окнами; 6 – пружина |
Индикатор кислорода предназначен для контроля подачи кислорода в маску. Схема индикатора кислорода представлена на рис. 2.12а. Механизм индикатора
состоит из двух скрепленных латунных дисков 2, между которыми зажата металлическая упругая мембрана 1. При возникновении потока кислорода через клапан легочного автомата давление по трубке передается мембране 1, которая под действием перепада давлений прогибается. Деформация мембраны 1 через рычажную систему 3 вызывает расхождение сегментов-шторок 4, которые при движении открывают окна на шкале 5 указателя. При вдохе сегменты 4 полностью расходятся. При выдохе под действием пружины 6 сегменты 4 сходятся и закрывают окна шкалы 5 указателя.
