Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
билеты по логике.docx
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
347.97 Кб
Скачать

Билет 27

Операции ограничения и обобщения понятий.

Обобщить понятие — значит перейти от понятия с меньшим объемом, но с большим содержанием к понятию с большим объемом, но с меньшим содержанием. Например, обобщая понятие «Министерство юстиции Российской Федерации», мы переходим к понятию «министерство юстиции». Объем нового (общего) понятия шире исходного (единичного) понятия.

Обобщение понятия не может быть беспредельным.

-Ограничение понятия представляет собой операцию, противоположенную операции обобщения. Ограничить понятие — значит перейти от понятия с большим объемом, но с меньшим содержанием к понятию с меньшим объемом, но большим содержанием. Чтобы, например, ограничить понятие «юрист», мы переходим к понятию «следователь», которое в свою очередь можем ограничить, образовав понятие «следователь прокуратуры». Пределом ограничения понятия является единичное понятие (например, «следователь прокуратуры Иванов»).

Чисто условные умозаключения, их роль в доказательстве.

Чисто условным называется умозаключение, обе посылки которого являются условными суждениями. 

Например:

Если изобретение создано совместным творческим трудом нескольких граждан (р), все они признаются соавторами изобретения ( q ).

Если они признаются соавторами изобретения (q), то порядок пользования правами на изобретение, созданное в соавторстве, определяется соглашением между соавторами (г)

Если изобретение создано совместным творческим трудом нескольких граждан (р), то порядок пользования правами на изобретение, созданное в соавторстве, определяется соглашением между соавторами (r)

В приведенном примере обе посылки — условные суждения, причем следствие первой посылки является основанием второй (q), из которого, в свою очередь, вытекает некоторое следствие (г). Общая часть двух посылок (q) позволяет связать основание первой (р) и следствие второй (г). Поэтому заключение также выражается в форме условного суждения.

Схема чисто условного умозаключения:

(р -> q) (q -> г)

р —> r

Вывод в чисто условном умозаключении основывается на правиле: следствие следствия есть следствие основания.

Билет 28

Виды понятий.

Понятия принято делить на следующие виды: 1) единичные и общие, 2) собирательные и несобирательные, 3) конкретные и абстрактные, 4) положительные и отрицательные, 5) безотносительные и соотносительные.

Понятия делятся на единичные и общие в зависимости от того, мыслится в них один элемент или множество элементов. Понятие, в котором мыслится один элемент, называется единичным (например, «Москва», «Л.Н. Толстой», «Российская Федерация»). Понятие, в котором мыслится множество элементов, называется общим(например, «столица», «писатель», «федерация»).

Общие понятия могут быть регистрирующими и нерегистрирующими. Регистрирующими называются понятия, в которых множество мыслимых в нем элементов поддается учету, регистрируется. Например, «участник Великой Отечественной войны 1941—1945 гг.», «родственники потерпевшего Шилова». Общее понятие, относящееся к неопределенному числу элементов, называется нерегистрирующим. Так, в понятиях «человек», «следователь», «указ» множество мыслимых в них элементов не поддается учету: в них мыслятся все люди, следователи, указы прошедшего, настоящего и будущего. Нерегистрирующие понятия имеют бесконечный объем.

Понятия делятся на собирательные и несобирательные. Понятия, в которых мыслятся признаки некоторой совокупности элементов, составляющих единое целое, называются собирательными. Например, «коллектив», «полк», «созвездие». Эти понятия отражают множество элементов (членов коллектива, солдат и командиров полка, звезд), однако это множество мыслится как единое целое. 

Понятие, в котором мыслятся признаки, относящиеся к каждому его элементу, называется несобирательным. Таковы, например, понятия «звезда», «командир полка», «государство».  В процессе рассуждения общие понятия могут употребляться в разделительном и собирательном смысле.  Если высказывание относится к каждому элементу класса, то такое употребление понятия будет разделительным; если же высказывание относится ко всем элементам, взятым в единстве, и неприложимо к каждому элементу в отдельности, то такое употребление понятия называется собирательным. 

Понятия делятся на конкретные и абстрактные в зависимости от того, что они отражают: предмет (класс предметов) или его признак (отношение между предметами). Понятие, в котором мыслится предмет или совокупность предметов как нечто самостоятельно существующее, называется конкретным; понятие, в котором мыслится признак предмета или отношение между предметами, называется абстрактным. Так, понятия «книга», «свидетель», «государство» являются конкретными; понятия «белизна», «смелость», «ответственность» — абстрактными.

Понятия делятся на положительные и отрицательные в зависимости от того, составляют ли их содержание свойства, присущие предмету, или свойства, отсутствующие у него.  Понятия, содержание которых составляют свойства, присущие предмету, называются положительными. Понятия, в содержании которых указывается на отсутствие у предмета определенных свойств, называются отрицательными. Так, понятия «грамотный», «порядок», «верующий» являются положительными; понятия «неграмотный», «беспорядок», «неверующий» — отрицательными. 

Понятия делятся на безотносительные и соотносительные в зависимости от того, мыслятся ли в них предметы, существующие раздельно или в отношении с другими предметами. 

Понятия, отражающие предметы, существующие раздельно и мыслящиеся вне их отношения к другим предметам, называются безотносительными. Таковы понятия «студент», «государство», «место преступления» и др. Соотносительные понятия содержат признаки, указывающие на отношение одного понятия к другому понятию. Например: «родители» (по отношению к понятию «дети») или «дети» (по отношению к понятию «родители»), «начальник» («подчиненный»), «получение взятки» («дача взятки»). Соотносительными являются также понятия «часть», «причина», «брат», «сосед» и др.

Разделительно-категорические умозаключения, условия правильности вывода.

Разделительно-категорическим называется умозаключение, в котором одна из посылок — разделительное, а другая посылка и заключение — категорические суждения.

Простые суждения, из которых состоит разделительное (дизъюнктивное) суждение, называются членами дизъюнкции, или дизъюнктами. Например, разделительное суждение «Облигации могут быть предъявительскими или именными» состоит из двух суждений — дизъюнктов: «Облигации могут быть предъявительскими» и «Облигации могут быть именными», соединенных логическим союзом «или».

Утверждая один член дизъюнкции, мы с необходимостью должны отрицать другой и, отрицая один из них, — утверждать другой. В соответствии с этим различают два модуса разделительно-категорического умозаключения: (1) утверждающе-отрицающий и (2) отрицающе-утверждающий.

1. В утверждающе-отрицающем модусе меньшая посылка — категорическое суждение — утверждает один член дизъюнкции, заключение — также категорическое суждение — отрицает другой ее член. Например;

Облигации могут быть предъявительскими (р) или именными (q) Данная облигация предъявительская (q)

Данная облигация не является именной (не-q) Схема утверждающе-отрицающего модуса:

pVVq, p

q

VV (друг под другом)— символ строгой дизъюнкции.

Заключение по этому модусу всегда достоверно, если соблюдается правило: большая посылка должна быть исключающе-разделительным суждением, или суждением строгой дизъюнкции.

2. В отрицающе-утверждающем модусе меньшая посылка отрицает один дизъюнкт, заключение утверждает другой. Например:

Облигации могут быть предъявительскими (р) или именными ( q )

Данная облигация не является предъявительской (не-р)

Данная облигация именная (q)

Схема отрицающе-утверждающего модуса:

< pvq >, p

q

< > — символ закрытой дизъюнкции.

Утвердительный вывод получен посредством отрицания: отрицая один дизъюнкт, мы утверждаем другой.

Заключение по этому модусу всегда достоверно, если соблюдается правило: в большей посылке должны быть перечислены все возможные суждения — дизъюнкты, иначе говоря, большая посылка должна быть полным (закрытым) дизъюнктивным высказыванием.