- •Поступление воды в растительную клетку. Осмотическое давление и его значение в поглощении воды клеткой. Методы определения осмотического давления.
- •2. Термодинамические показатели водного режима растений: активность воды, химический и водный потенциал. Методы определения водного потенциала.
- •3. Сосущая сила клетки и водный потенциал. Методы определения сосущей силы клетки.
- •4. Состояние воды в растворах. Взаимодействие воды и биополимеров (белков), гидратация. Формы воды в клетке – свободная и связанная вода, их физиологическая роль.
- •5. Корневая система как орган поглощения воды. Состояние воды в почве. Поступление и передвижение воды в корне: пути и механизмы.
- •6. Корневое давление. «Плач» и гуттация растений.
- •7. Транспирация, ее значение; лист как орган транспирации. Виды транспирации, ее показатели. Суточный ход транспирации, влияние внешних условий.
- •8. Устьичная транспирация. Регуляция устьичных движений при действии внешних и внутренних условий.
- •9.Пути и механизмы передвижения воды по растению. Восходящий и нисходящий ток.
- •10. Ближний и дальний (флоэмный) транспорт ассимилятов. Транспортные формы веществ. Зависимость транспорта веществ от факторов окружающей среды.
- •11. Роль транспорта веществ в обеспечение донорно-акцепторных систем и интеграции функций целого растения.
- •12. Особенности водного обмена у растений различных экологических групп. Физиологические основы орошаемого земледелия.
- •13. Функциональное взаимодействие листьев и корней (цикл Прянишникова – Курсанова).
9.Пути и механизмы передвижения воды по растению. Восходящий и нисходящий ток.
Поглощение воды корневой системой идет благодаря работе двух концевых двигателей водного тока: верхнего концевого двигателя(транспирации), и нижнего концевого двигателя, или корневого двигателя. Основной силой, вызывающей поступление и передвижение воды в растении, является присасывающая сила транспирации, в результате которого возникает градиент водного потенциала.
Водный потенциал – это мера энергии, используемой водой для передвижения. Водный потенциал и сосущая сила одинаковы по абсолютному значению, но противоположны по знаку.
Путь воды по растению распадается на три различные по физиологии, строению и протяженности части:
1. По живым клеткам корня.
2. По мертвым элементам ксилемы корня, стебля, черешка и жилок.
3. По живым клеткам листа до устьиц.
(1),(3) - по живым клеткам корня и листьев вода передвигается осмотическим путем с помощью разности сосущих сил соседних клеток. (2) – передвижение воды по сосудам ксилемы и трахеидам проходит довольно легко, как по полым трубкам, подчиняясь гидродинамическим законам. По протяженности эти пути тоже сильно отличаются.
Восходящий ток - это ток минеральных солей, растворенных в воде, идущих от корней по стеблю к листьям. Восходящий ток осуществляется по сосудам и трахеидам ксилемы (древесины).
основные особенности восх.тока:
1. движется главным образом по ксилеме.
2.Кроме воды по восходящему току передвигаются минеральные вещества из почвы.
3.Большая часть воды восходящего потока испаряется в атмосферу в результате транспирации.
4.Меньшая часть воды восходящего потока (0,2%) используется:
А) на метаболитические реакции;
Б) на поддержания тургора клеток;
В) на транспорт органических веществ вниз по флоэме
5.Движущей силой восходящего тока воды в растении является градиент водного потенциала через растение от почвы до атмосферы, который определяется градиентом осмотического потенциала в клетках корня и транспирацией.
Значение восходящего тока в растении:
1. Служит средством транспортировки минеральных веществ.
2. Участвует в водоснабжении и поддержании тургора клеток.
3. За счет транспирации защищает растение от перегрева.
Нисходящий ток – это движение органических веществ от листьев к корням по ситовидным элементам флоэмы (луба).
Его основные особенности:
1.Это направленный вниз флоэмный поток органических веществ (продуктов фотосинтеза), формирующихся в мезофилле листа.
2.Он доставляет органические соединения к тканям корня, где они используются в метаболизме.
3.Движущей силой является осмотический градиент, возникающий вследствие накопления сахаров и других продуктов фотосинтеза.
Низкорослых травянистых растений механизм перетекания ксилемного сока заключается в том, что корневое давление нагнетает воду в сосуды центрального цилиндра корня, а сосущие силы, возникающие в листьях из-за транспирации, притягивают эту воду, создавая постоянный ток воды по всему растению.
У гигантов растительного мира (эвкалипт, 140м) водный ток испытывает и преодолевает силу земного притяжения. Объясняет подъем на такую высоту воды теория сцепления (когезии), согласно которой вода в капиллярных трубках сосудов ксилемы поднимается вверх в ответ на присасывающее транспирации из-за действия сил сцепления молекул воды друг с другом и действия сил прилипания (адгезии) столба воды к гидрофильным стенкам сосудов. Обе силы препятствуют образованию воздушных полостей в сосудах.
Передвижение воды по растению.
Немецкий физиолог Мюнх развил представление о существовании в корневой системе двух относительно не зависимых друг от друга объемов, по которым передвигается вода, - апопласта и симпласта.
Апопласт – это свободное пространство корня, в которое входят межклетные промежутки, оболочки клеток, а также сосуды ксилемы.
С
импласт
– это совокупность протопластов всех
клеток, отграниченных полупроницаемой
мембраной. Благодаря многочисленным
плазмодесмам, соединяющим между собой
протопласт отдельных клеток, симпласт
представляет единую систему. Апопласт
разделен на два объема. Первая часть
апопласта расположена в коре корня до
клеток эндодермы, вторая – по другую
сторону клеток эндодермы, и включает в
себя сосуды ксилемы. Клетки эндодермы
благодаря пояскам Каспари представляют
как бы барьер для передвижения воды по
свободному пространству. Для того чтоб
попасть в сосуды ксилемы, вода должна
пройти через полупроницаемую мембрану
и главным образом по апопласту и лишь
частично по симпласту. Однако в клетках
эндодермы передвижение воды идет по
симпласту. Далее вода поступает в сосуды
ксилемы. Затем передвижение воды идет
по сосудистой системе корня, стебля и
листа. Из сосудов стебля вода движется
через черешок или листовое влагалище
в лист. В листовой пластинке водопроводящие
сосуды расположены в жилках. Жилки,
постепенно разветвляясь, становятся
более мелкими. Чем гуще сеть жилок, тем
меньшее сопротивление встречает вода
при передвижении к клеткам мезофилла
листа. Вся вода в клетке находится в
равновесном состоянии. Вода передвигается
от клетки к клетке благодаря градиенту
сосущей силы.
