- •16. Методика изучения письменных приемов сложения и вычитания многозначных чисел.
- •17. Методика изучения письменных приемов умножения и деления многозначных чисел.
- •18. Задачи в начальном курсе математики. Классификация простых задач.
- •19. Методика обучения решению простых задач.
- •20. Методика обучения решению составных задач
- •21. Использование приема моделирования при обучении решению задач.
- •22. Этапы работы над задачей.
- •23. Виды разбора текстовых задач, используемых при поиске её решения
- •24. Способы решения текстовых задач.
- •25. Различные формы записи текстовых задач.
- •26. Способы проверки правильности решения задач.
- •27.Методика изучения алгебраического материала.
- •28. Методика изучения числовых выражений. Правила порядка выполнения действий.
- •29. Методика обучения решению уравнений и неравенств в начальном курсе математики.
- •30. Методика формирования представлений о геометрической фигуре.
- •31. Методика изучения основных величин.
- •32. Формирование представлений о площади фигуры. Вычисление площади фигуры с помощью палетки.
- •Ознакомление с квадратным сантиметром
- •34. Домашняя работа по математике в начальных классах.
- •35. Внеклассная работа по математике, её особенности и формы проведения.
27.Методика изучения алгебраического материала.
Понятия, основанные на элементах алгебры - числовые выражения, равенство, неравенство, уравнение. Введение элементов алгебры в начальный курс математики позволяет с самого начала обучения вести планомерную работу отправленную на формирование у детей таких важнейших математических понятий как: выражение, равенство, неравенство, уравнение. Ознакомление с использованием буквы как символа обозначающего любое число из известной детям области чисел, создает условия для обобщения многих на начальном курсе вопросов арифметической теории, является хорошей подготовкой к ознакомлению детей в дальнейшем с понятиями в переменной функций. Более раннее ознакомление с использованием алгебраического способа решения задач позволяет внести серьезнее усовершенствования во всю систему обучения детей решению разнообразных текстовых задач. Программой начальных классов предусматривается знакомство учащихся с использования буквенной символики, решений элементарных уравнений первой степени с одним неизвестным и применений их к задачам в одно действие. Эти вопросы изучаются в тесной связи с арифметическим материалом, что способствует формированию числа и арифметических действий. С первых дней обучения начинается работа по формированию у учащихся понятий равенства. Первоначально дети учатся сравнивать множество предметов уравнивать неравные группы, преобразовывать равные группы в неравные. Уже при изучении десятка чисел вводятся упражнения сравнения. Сначала они выполняются с опоры на предметы. При изучении арифметических действий включаются упражнения на сравнения выражений, их делят на 3 группы. 1. Упражнение, направленное на уточнение знаний учащихся об арифметических действиях и на их применение. При ознакомлении учащихся с арифметическими действиями сравниваются выражение вида 5+3 и 5-3; 8*2 и 8/2. Сначала выражения сравниваются путем нахождения значений каждого и сравнения полученных чисел. В дальнейшем задание выполняется ни основе того, что сумма двух чисел больше их разности, а произведение - больше их частного; вычисление используется только для проверки результата. Сравнение выражений вида 7+7+7 и 7*3 проводится для закрепления знаний учащихся о связи сложения и умножения. В процессе сравнения учащиеся знакомятся с порядком выполнения арифметических действий. Сначала рассматриваются выражения, содержание скобки, вида 16 - (1+6). 2. После этого рассматривается порядок действий в выражениях без скобок содержащих действия одной и двух степеней. Эти значения учащиеся усваивают в процессе выполнения примеров. Сначала рассматриваются порядок действий в выражениях, содержащих действия одной ступени, например: 23 + 7 - 4 , 70 : 7 * 3. При этом дети должны усвоить, что если выражений есть только сложение и вычитания или только умножение и деление, то они выполняются в том порядке в каком записаны. Затем вводятся выражения, содержащие действия обеих ступеней. Учащимся сообщается, что в таких выражениях надо сначала выполнить по порядку действия умножения и деления, а затем сложение и вычитание, например: 21/3+4*2=7+8=15; 16+5*4=16+20=36. Чтобы убедить учащихся в необходимости соблюдения порядка действий, полезно выполнить их в одном и тоже выражении в другой последовательности и сравнить полученные результаты. 3. Упражнения, при выполнении которые учащиеся усваивают и закрепляют знания по соотношению между компонентами и результатами арифметических действий. Они включаются уже при изучении чисел десятка. В этой группе упражнений учащиеся знакомятся со случаями изменения результатов действий в зависимости от изменения одного из компонентов. Сравниваются выражения, в которых изменяется одно из слагаемых (6+3 и 6+4) или уменьшаемое 8-2 и 9-2 и т.д. Подобные задания включаются также при изучении табличного умножения и деления и выполняются с помощью вычислений ( 5*3 и 6*3, 16:2 и 18:2 ) и т.д. В дальнейшем можно сравнивать эти выражения без опоры на вычисления.
