Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
дом.з №1, элюр №3.doc
Скачиваний:
34
Добавлен:
01.07.2025
Размер:
5.52 Mб
Скачать

2.2. Положение прямой линии относительно плоскостей проекций

При решении метрических задач, т. е. задач, определяющих натуральную величину отрезков, углов, плоских фигур, необходимо определять натуральную величину отрезка прямой и углы наклона его к плоскостям проекций. Для этого необходимо знать чертежи отрезка прямой в разном положении относительно плоскостей проекций, т. к. в зависимости от этого положения отрезок прямой часто проецируется на чертеж без искажения и, соответственно, без искажения проецируются и углы наклона данной прямой к плоскостям проекций. В этом случае достаточно обозначить натуральную величину отрезка прямой непосредственно на чертеже. Аналогично поступают и с углом наклона отрезка к плоскостям проекций. Поэтому очень важно знать, как выглядят чертежи прямой в зависимости от положения прямой относительно плоскостей проекций.

Относительно плоскостей проекций прямая может занимать различные положения. Выделяют два основных положения прямой относительной плоскостей проекций.

Общее положение – не параллельное и не перпендикулярное ни одной из плоскостей проекций. Прямую, не параллельную и не перпендикулярную ни одной из плоскостей проекций, называют прямой общего положения (рис. 16).

б

а

Рис. 16. Прямая общего положения:

а – в пространственной модели; б – на эпюре Монжа

На чертеже такая прямая проецируется всегда с искажением, и ни на одной проекции из проекций нет натуральной величины углов наклона прямой к плоскостям проекций.

Частное положение – параллельное или перпендикулярное одной из плоскостей проекций. Прямые линии, параллельные одной из плоскостей проекций или двум плоскостям проекций, т. е. перпендикулярные третьей плоскости, называют прямыми частного положения.

П рямые частного положения в свою очередь делятся на две группы:

  • Прямые уровня – прямые, параллельные одной из плоскостей проекций.

  • Проецирующие прямые – прямые, перпендикулярные одной из плоскостей проекций.

2.2.1. Прямые уровня

Прямая уровня может лежать в самой плоскости проекций. Такую прямую называют линией нулевого уровня.

Горизонтальная прямая уровня или горизонталь – прямая линия, параллельная горизонтальной плоскости проекций.

Рассмотрим рис. 17а: отрезок прямой АВ параллелен плоскости проекций Н; следовательно, каждая точка данного отрезка прямой имеет постоянную координату Z, т. е. имеет одинаковую высоту. Поэтому фронтальная проекция отрезка ab параллельна оси Х и является характерной проекцией.

Длина горизонтальной проекции отрезка равна его натуральной величине ([ab] = [AB]); угол β, образованный горизонтальной проекцией и осью Х, равен углу наклона прямой к фронтальной плоскости проекций (рис. 17б).

а

б

Рис.17. Горизонтальная прямая уровня:

а – в пространственной модели; б – на эпюре Монжа

Фронтальная прямая уровня или фронталь – прямая линия, параллельная фронтальной плоскости проекций.

Рассмотрим рис. 18а: отрезок прямой CD параллелен фронтальной плоскости проекций V, следовательно, координата Y для каждой точки данного отрезка прямой постоянная, т. е. точки имеют одну и ту же глубину, поэтому горизонтальная проекция cd параллельна оси Х. Эта проекция является характерной для фронтали. Длина фронтальной проекции отрезка равна его натуральной величине ([c׳d׳] = [CD]); угол α, образованный фронтальной проекцией и осью Х, равен углу наклона отрезка прямой к горизонтальной плоскости проекций (рис. 18б).

Профильная прямая уровня – прямая линия, параллельная профильной плоскости проекций.

Рассмотрим рис. 19а: отрезок прямой EF параллелен плоскости W, следовательно, каждая точка данного отрезка прямой имеет постоянную координату Х, т. е. точки имеют одну и ту же широту. Поэтому, (e׳f׳) || [OX) и (ef) || [OY); длина профильной проекции отрезка равна его натуральной величине ([e′′f′′] = [EF]); углы α и β, образованные профильной проекцией с осями Z и Y, равны углам наклона прямой к горизонтальной и фронтальной плоскостям проекций соответственно (рис. 19б).

б

а

Рис. 18. Фронтальная прямая уровня:

а – в пространственной модели; б – на эпюре Монжа

а

б

Рис. 19. Профильная прямая уровня:

а – в пространственной модели; б – на эпюре Монжа

Вывод: каждая линия уровня проецируется в натуральную величину на ту плоскость проекций, которой она параллельна. На эту же плоскость проекций проецируются без искажения и углы, которые эта прямая образует с остальными двумя плоскостями проекций. На остальные плоскости проекций прямая проецируется параллельно соответствующим проекционным осям.