- •Введение
- •В данной работе сделана попытка обобщить теоретические и технологические разработки способов ктс с программированным воздействием на зону формирования точечных сварных соединений.
- •1. Сущность и технологии традиционных способов контактной точечной сварки
- •1.1. Двусторонняя точечная сварка, ее разновидности и основные параметры точечных сварных соединений
- •1.2. Основные технологические приемы контактной точечной сварки
- •1.2.1. Термодеформационные процессы, протекающие в зоне сварки и общая схема формирования точечного сварного соединения
- •1.2.2. Технологические приемы традиционных способов контактной точечной сварки
- •1.2.3. Контактная точеная сварка с обжатием периферийной зоны соединений
- •1.3. Параметры режимов — факторы регулирования процесса точечной сварки
- •1.3.1. Время сварки
- •1.3.2. Сила сварочного тока
- •1.3.3. Усилие сжатия электродов
- •1.3.4. Форма и размеры рабочих поверхностей электродов
- •1.3.5. Критерии подобия для определения режимов сварки
- •2. Основные Процессы, протекающие при контактной точечной сварке
- •2.1. Сближение свариваемых деталей
- •2.1.1. Деформирование свариваемых деталей при их сближении
- •2.1.2. Влияние деформирования деталей на усилие сжатия в свариваемом контакте
- •Допускаемая величина зазоров при ктс
- •2.1.3. Экспериментально-расчетный метод определения усилия деформирования деталей при их сближении
- •2.2. Формирование контактов при сжатии деталей электродами
- •Значения fд при различных сочетаниях s, t, u и δ
- •2.2.1. Формирование механических контактов
- •2.2.2. Формирование электрических контактов
- •2.3. Электрическая проводимость зоны сварки.
- •2.3.1. Электрические сопротивления контактов при точечной сварке
- •2.3.2. Электрические сопротивления собственно свариваемых деталей
- •2.3.3. Общее электрическое сопротивления зоны сварки
- •Значения rЭэ к в конце процесса ктс
- •2.4. Нагрев металла в зоне сварки и методы количественной его оценки
- •2.4.1. Источники теплоты в зоне формирования сварного соединения
- •2.4.2. Температурное поле в зоне формирования соединения
- •2 .4.3. Тепловой баланс в зоне сварки и расчет сварочного тока
- •2.5. Объемная пластическая деформация металла в зоне формирования точечного сварного соединения
- •2.5.1. Методики экспериментальных исследований макродеформаций металла в зоне сварки
- •2.5.2. Характер пластических деформаций металла в зоне сварки на стадии нагрева
- •3. Математические модели основных термодеформационных процессов, протекающих в зоне точечной сварки
- •3.1 Термодеформационное равновесие силовой системы электрод - детали – электрод при традиционных способах сварки
- •3.2. Термодеформационное равновесие силовой системы электрод-детали-электрод при контактной точечной сварке с обжатием периферийной зоны соединения
- •3.2.1. Способ контактной точечной сварки с обжатием периферийной зоны соединений вне контура уплотняющего пояска
- •3.2.2. Математическая модель термодеформационного равновесия процесса контактной точечной сварки с обжатием периферийной зоны соединения
- •3.3. Оценка теплового состояния зоны сварки на стадии нагрева
- •3.3.1 Экспериментально - расчетный метод оценки теплового состояния зоны сварки на стадии нагрева
- •3.3.2 Методики расчетного определения размеров ядра и средних значений температуры в зоне сварки
- •3.4.1. Методика расчета среднего значения нормальных напряжении в контакте деталь - деталь
- •3.4.2. Методика расчета давления расплавленного металла в ядре
- •3.5. Методики определения параметров термодеформационных процессов в условиях формирования точечного сварного соединения
- •3.5.1. Сопротивление пластической деформации металла в условиях деформирования при повышенных температурах
- •3.5.2 Определение степени и скорости пластической деформации металла в зоне точечной сварки
- •4. Математическое моделирование процессов формирования точечных сварных соединений
- •4.1. Методики расчета изменения диаметра уплотняющего пояска в процессе контактной точечной сварки
- •4.1.1. Методика расчета изменения диаметра уплотняющего пояска при традиционных способах контактной точечной сварки
- •4.1.2. Методика расчета изменения диаметра уплотняющего пояска при контактной точечной сварки с обжатием периферии соединения
- •4.2. Изменение термодеформационных процессов на стадии нагрева при традиционных способах точечной сварки
- •4.2.1. Изменение параметров термодеформационных процессов при традиционных способах точечной сварки
- •4.2.2. Особенности термодеформационных процессов при точечной сварке с обжатием периферийной зоны соединения
- •4.2.3. Влияние режимов сварки на параметры термодеформационных процессов, протекающих в зоне формирования соединения
1.3.2. Сила сварочного тока
Сила сварочного тока IСВ является одним из основных параметров режима КТС, поскольку при неизменной длительности его импульса tСВ определяет не только количество энергии, выделяющейся в зоне сварки, но и, что наиболее важно для процесса формирования соединения, градиент её увеличения по времени. Вследствие этого именно сила сварочного тока определяет скорость нагрева металла в зоне формирования соединения.
В ряде случаев сварки, в особенности при малом расстоянии (шаге) между сварными точками, сила сварочного тока IСВ, т. е. тока который протекает через зону формирования соединения и определяет тепловыделение в ней, и сила тока, который протекает во вторичном контуре сварочной машины I2, могут различаться между собой. Причиной этого может являться ток шунтирования IШ, который протекает вне зоны сварки, в частности, через ранее сваренные точки (рис. 1.10) или контакты деталь-деталь, расположенные вне зоны формирования соединения, например, при точечной сварке с обжатием периферийной зоны соединения. Таким образом, значение вторичного тока сварочной машины I2 зависит от сварочного тока IСВ и тока шунтирования IШ:
(1.9)
Ток шунтирования. Зона проводимости тока шунтирования представляет собой электрическую цепь с сопротивлением rШ, параллельную электрической цепи зоны сварки с сопротивлением rЭЭ. Вследствие этого силу тока шунтирования можно вычислить по формуле [3]:
,
(1.10)
где
— электрическое сопротивление шунтирующей
ветви; ρ — удельное электрическое
сопротивление металла свариваемых
деталей;
kЭ
— коэффициент (
);
s — толщина детали;
bПР — ширина
шунта, приведенная с учётом растекания
тока и равная
;
dП и dШ
— диаметры уплотняющего пояска и
шунтирующего контакта соответственно.
Сварочный ток. От силы сварочного тока размеры ядра расплавленного металла зависят в наибольшей степени (рис. 1.9, б). С увеличением IСВ проплавление деталей А и диаметр ядра dЯ растут почти прямо пропорционально изменению IСВ.
Силу сварочного тока IСВ, по той же причине, что и tСВ, пока определяют только ориентировочно по технологическим рекомендациям или по эмпирическим зависимостям [2…4, 7…11, 13, 15…17]. В отличие от tСВ, для определения которого расчетные методики вообще отсутствуют, для определения IСВ в теории КТС предложено много самых разнообразных зависимостей, к сожалению, не отличающихся высокой точностью и универсальностью, например, зависимостей следующего вида [73...76]:
;
;
;
,
где s — толщина деталей; dЭ — диаметр рабочей поверхности электрода; ki – опытный коэффициент; θ — температура плавления (с учетом скрытой теплоты плавления); ρ и λ — удельное электрическое сопротивление и коэффициент теплопроводности; dТ — диаметр ядра (см); ρТ — удельное электрическое сопротивление металла в момент его плавления (мкОм/см).
В практике традиционных способов КТС для сварочного импульса, длительностью tСВ, усредненную силу сварочного тока IСВ чаще всего приближенно рассчитывают по следующей зависимости, которая получена из общеизвестного закона Джоуля – Ленца [8…11, 16]:
,
[3] (1.11)
где QЭЭ
— количество теплоты, выделяющееся в
зоне сварки, которое требуется для
образования сварного соединения заданных
размеров (величина QЭЭ
определяется по уравнению теплового
баланса (см. ниже п. 2.4.3));
mr
— коэффициент, который учитывает
изменение сопротивления зоны сварки
rЭЭ в процессе
формирования соединения (для
низкоуглеродистых сталей он равен
,
для алюминиевых и магниевых сплавов —
,
для коррозионно-стойких сталей —
,
для сплавов титана —
;
rДК —
электрическое сопротивление деталей
в конце сварки (определение rДК
см. ниже п. 2.3.3).
