Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
МА-практ-1с.doc
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
1.19 Mб
Скачать
  1. Предел последовательности

Бесконечно малые последовательности, предел последовательности

Последовательность { n } называется бесконечно малой, если для любого сколь угодно малого положительного числа можно подобрать такой номер N, что, начиная с этого номера (т.е. для всех nN), будет выполнено неравенство | n | < . Обозначение: б.м.п. { n }.

1. Число А называется пределом последовательности { αn }, если последовательность { n }= { nА} является бесконечно малой, или

2. число А называется пределом последовательности { αn }, если для любого положительного числа можно подобрать такой номер N ( как правило, зависящий от ), что, начиная с этого номера (т.е. для всех

nN), будет выполнено неравенство | αnА | < , или

3. геометрическое определение: число А называется пределом последовательности { αn }, если в любом интервале с центром в точке А находятся почти все (т.е. все, кроме конечного числа) члены этой последовательности.

В случае, если последовательность { αn } имеет своим пределом число А, говорят также, что последовательность { n } сходится ( или стремится ) к числу А, и обозначают этот факт так:

Если последовательность не имеет предела, то говорят, что она расходится.

Связь между сходимостью и ограниченностью последовательности

1. Всякая сходящаяся последовательность является ограниченной.

2. Всякая монотонная и ограниченная последовательность сходится.

3. Всякая постоянная последовательность, члены которой равны с, сходится к этому числу.

Свойства бесконечно малых последовательностей

1. Сумма (разность) двух бесконечно малых последовательностей бесконечно малая последовательность.

  1. Произведение бесконечно малой последовательности на ограниченную последовательность также

бесконечно малая последовательность.

  1. Произведение двух бесконечно малых последовательностей бесконечно малая последовательность.

  2. Произведение бесконечно малой последовательности на постоянное число также бесконечно малая последовательность.

Операции над пределами последовательностей

  1. П редел суммы (разности) двух сходящихся последовательностей равен сумме (разности) их пределов:

  2. П редел произведения двух сходящихся последовательностей равен произведению их пределов:

В частности:

Пределы и неравенства

  1. Пусть все члены данной сходящейся последовательности неотрицательны. Тогда ее предел также неотрицателен.

  2. Пусть каждый член одной сходящейся последовательности больше или равен соответствующему члену другой сходящейся последовательности. Тогда и предел первой последовательности больше или равен пределу второй последовательности

  3. Теорема о промежуточной переменной (о двух милиционерах): Пусть соответствующие члены трех данных последовательностей { an }, { bn } и { сn } удовлетворяют условию anbnсn . Тогда если последовательности { an } и { сn } сходятся к одному и тому же пределу, то последовательность { bn } также сходится к этому пределу.