Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Сидоренко Е`(заочн)2013.doc
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
455.17 Кб
Скачать

Алгоритм 17

Расчет критерия φ*

  1. Определить те значения признака, которые будут критерием для разделения испытуемых на тех, у кого "есть эффект" и тех, у кого "нет эффекта". Если признак измерен количественно, использовать критерий λ, для поиска оптимальной точки разделения.

  2. Начертить четырехклеточную таблицу из двух столбцов и двух строк. Первый столбец - "есть эффект"; второй столбец - "нет эффекта"; первая строка сверху - 1 группа (выборка); вторая строка - 2 группа (выборка).

  3. Подсчитать количество испытуемых в первой группе, у которых "есть эффект", и занести это число в левую верхнюю ячейку таблицы.

  4. Подсчитать количество испытуемых в первой выборке, у которых "нет эффекта", и занести это число в правую верхнюю ячейку таблицы. Подсчитать сумму по двум верхним ячейкам. Она должна совпадать с количеством испытуемых в первой группе.

  5. Подсчитать количество испытуемых во второй группе, у которых "есть эффект", и занести это число в левую нижнюю ячейку таблицы.

  6. Подсчитать количество испытуемых во второй выборке, у которых "нет эффекта", и занести это число в правую нижнюю ячейку таблицы. Подсчитать сумму по двум нижним ячейкам. Она должна совпадать с количеством испытуемых во второй группе (выборке).

  7. Определить процентные доли испытуемых, у которых "есть эффект", путем отнесения их количества к общему количеству испытуемых в данной группе (выборке). Записать полученные процентные доли соответственно в левой верхней и левой нижней ячейках таблицы в скобках, чтобы не перепутать их с абсолютными значениями.

  8. Проверить, не равняется ли одна из сопоставляемых процентных долей нулю. Если это так, попробовать изменить это, сдвинув точку разделения групп в ту или иную сторону. Если это невозможно или нежелательно, отказаться от критерия φ* и использовать критерий χ2.

  9. Определить по Табл. XII Приложения 1 величины углов φ* для каждой из сопоставляемых процентных долей.

10. Подсчитать эмпирическое значение φ* по формуле:

где: φ1 - угол, соответствующий большей процентной доле; φ2 - угол, соответствующий меньшей процентной доле; n1 - количество наблюдений в выборке 1; n2 - количество наблюдений в выборке 2.

11. Сопоставить полученное значение φ* с критическими значениями: φ*≤1.64 (р<0,05) и φ*≤2,31 (р<0,01). Если ф*эмп > ф*кр, Но отвергается.

При необходимости определить точный уровень значимости полученного ф*эмп по Табл. XIII Приложения 1.

Глава 6 метод ранговой корреляции

6.1. Обоснование задачи исследования согласованных действий

Когда говорят о корреляции, используют термины "корреляционная связь" и "корреляционная зависимость".

Корреляционная связь - это согласованные изменения двух признаков или большего количества признаков (множественная корреляционная связь). Корреляционная связь отражает тот факт, что изменчивость одного признака находится в некотором соответствии с изменчи­востью другого (Плохинский Н.А., 1970, с. 40). "Стохастическая" связь имеется тогда, когда каждому из значений одной случайной величины соответствует специфическое (условное) распределение вероятностей значений другой величины, и наоборот, каждому из значений этой другой величины соответствует специфическое (условное) распределение вероятностей значений первой случайной величины" (Суходольский Г.В., 1972, с. 178). Стохастическая означает вероятностная. Связи между случайными явлениями называют вероятностными, или стохастическими связями (Суходольский Г. В., 1972, с. 52). Этот термин подчеркивает их отличие от детерминированных или функциональных связей в физике или математике (связь площади треугольника с его высотой и основанием, связь длины окружности с ее радиусом и т. п.)- В функциональных связях каждому значению первого признака всегда соответствует (в идеальных условиях) совершенно определенное значение другого признака (Плохинский Н.А., 1970, с. 41). В корреляционных связях каждому значению одного признака может соответствовать определенное распределение значений другого, признака, но не определенное его значение.

Корреляционная зависимость - это изменения, которые вносят значения одного признака в вероятность появления разных значений другого признака. Учитывая, что термин "зависимость" явно или неявно подразумевает влияние, лучше пользоваться более нейтральным термином "корреляционная связь".

Корреляционные связи различаются по форме, направлению и степени (силе).

По форме корреляционная связь может быть прямолинейной или криволинейной. Прямолинейной может быть, например, связь между количеством тренировок на тренажере и количеством правильно решаемых задач в контрольной сессии. Криволинейной может быть, например, связь между уровнем мотивации и эффективностью выполнения задачи (см. Рис. 6.1). При повышении мотивации эффективность выполнения задачи сначала возрастает, затем достигается оптимальный уровень мотивации, которому соответствует максимальная эффективность выполнения задачи; дальнейшему повышению мотивации сопутствует уже снижение эффективности.

Рнс. 6.1. Связь между эффективностью решения задачи и силой мотивационной тенденции (по J.W. Atkinson, 1974, р.200)

По направлению корреляционная связь может быть положительной ("прямой") и отрицательной ("обратной"). При положительной прямолинейной корреляции более высоким значениям одного признака соответствуют более высокие значения другого, а более низким значениям одного признака - низкие значения другого (см. Рис. 6.2). При отрицательной корреляции соотношения обратные.

Рис. 6.2. Схема прямолинейных корреляционных связей:

А - положительная (прямая) корреляционная связь: Б - отрицательная (обратная) корреляционная связь

При положительной корреляции коэффициент корреляции имеет положительный знак, например r=+0,207, при отрицательной корреляции - отрицательный знак, например r=—0,207.

Степень, сила или теснота корреляционной связи определяется по величине коэффициента корреляции.

Сила связи не зависит от ее направленности и определяется по абсолютному значению коэффициента корреляции. Максимальное возможное абсолютное значение коэффициента корреляции r=1,00; мини­мальное r=0.

Используется две системы классификации корреляционных связей по их силе: общая и частная. Общая классификация корреляционных связей (по Ивантер Э.В., Коросову А.В., 1992):

сильная, или тесная при коэффициенте корреляции r>0,70;

  1. средняя при 0,50<r<0,69;

  2. умеренная при 0,30<r<0,49;

  3. слабая при 0,20<r<0,29;

  4. очень слабая при r<0,19.

Частная классификация корреляционных связей:

  1. высокая значимая корреляция - при r, соответствующем уровню статистической значимости р<0,01;

  2. значимая корреляция - при r, соответствующем уровню статистической значимости р<0,05;

  3. тенденция достоверной связи - при r, соответствующем уровню статистической значимости р<0,10;

4)незначимая корреляция - при r, не достигающем уровня статистической значимости.

Две эти классификации не совпадают. Первая ориентирована только на величину коэффициента корреляции, а вторая определяет, какого уровня значимости достигает данная величина коэффициента корреляции при данном объеме выборки. Чем больше объем выборки, тем меньшей величины коэффициента корреляции оказывается достаточно, чтобы корреляция была признана достоверной. В результате при Малом объеме выборки может оказаться так, что сильная корреляция окажется недостоверной. В то же время при больших объемах выборки. Даже слабая корреляция может оказаться достоверной.

В психологических исследованиях чаще всего применяется коэффициент линейной корреляции г Пирсона. Однако этот метод является параметрическим и поэтому не лишен недостатков, свойственных параметрическим методам (см. параграф 1.8). Параметрическими являются также методы определения корреляционного отношения и подсчета множественных коэффициентов корреляции. Кроме того, эти методы, как правило, требуют машинной обработки данных. По этим причинам они остаются за пределами нашего рассмотрения.

И все же, если исследователь хочет применить метод корреляций, в настоящем пособии предлагается использовать коэффициент ранговой корреляции Спирмена. Основанием для выбора этого коэффициента служат: а) его универсальность; б) простота; в) широкие возможности в решении задач сравнения индивидуальных или групповых иерархий признаков.

Универсальность коэффициента ранговой корреляции проявляется в том, что он применим к любым количественно измеренным или ранжированным данным. Простота метода позволяет подсчитывать корреляцию "вручную". Уникальность метода ранговой корреляции состоит в том, что он позволяет сопоставлять не индивидуальные показатели, а индивидуальные иерархии, или профили, что недоступно ни одному из других статистических методов, включая метод линейной корреляции (Плохинский НА, 1970, с. 167).

Коэффициент ранговой корреляции рекомендуется применять в тех случаях, когда нам необходимо проверить, согласованно ли изменяются разные признаки у одного и того же испытуемого и насколько совпадают индивидуальные ранговые показатели у двух отдельных испытуемых или у испытуемого и группы.