- •Металлорежущие станки
- •Введение
- •Классификация мрс
- •Специально выпускаемые станки
- •Особенности обозначения станков с чпу
- •Основные технико-экономические показатели мрс
- •Методы образования производящих линий
- •Кинематические группы и кинематические связи
- •Разновидности кинематической структуры
- •Точные и приближенные методы настройки кинематических цепей (кц)
- •Общие сведения о приводах
- •Классификация приводов
- •Основные технические характеристики приводов
- •Виды регулирования скорости движения рабочего органа
- •Шпиндельный узел Общие сведения о шпиндельных узлах привода главного двигателя
- •Зубо- и резьбообрабатывающие станки
- •Зубодолбежные станки
- •Структурная схема зубодолбежного станка
- •Зубодолбежный станок 5140
- •Зуборезные станки
- •Структурная схема зубофрезерного станка при обработке цилиндрических прямозубых зубчатых колес
- •Структурная схема зубофрезерных станков при обработке косозубых зубчатых колес
- •Способы обработки червячных зубчатых колес на зубофрезерных станках
- •Зубострогальные станки. Станки для обработки конических зубчатых колес
- •Разновидности конических колес (по виду в плане)
- •Обработка конических зубчатых колес методом копирования
- •Метод обката
- •Обработка конических зубчатых колес с круговым зубом
- •Зубошевинговальные станки
- •Зубошлифовальные станки
- •Зубохонинговальные станки
- •Резьбообкатывающие станки
- •Станки для обработки тел вращения
- •Образующая – уменьшающееся в диаметре окружность (след)
- •Токарные станки общего назначение шестой подгруппы
- •Типовая компоновка и назначение узлов
- •Приспособления поставляемы с твс
- •Способы крепления заготовок
- •Общие сведения о станках с чпу. Токарные станки с чпу
- •Разновидности револьверных головок
- •Движение токарно-револьверных станков
- •Токарно-карусельные станки
- •Токарные автоматы и полуавтоматы
- •Классификация
- •Токарные одношпиндельные автоматы
- •Автоматы фасонно-продольного точения
- •Токарно-револьверные автоматы
- •Токарные многошпиндельные автоматы
- •Много шпиндельные токарные полуавтоматы
- •Токарные многорезцовые полуавтоматы
- •Станки для обработки отверстий
- •Сверлильные станки
- •Вертикально-сверлильные станки
- •Радиально-сверлильные станки
- •Расточные станки
- •Горизонтально-расточные станки
- •Координатно-расточные станки
- •Алмазно-расточные станки
- •Протяжные станки для обработки отверстий
- •Станки для обработки призматических деталей
- •Основные разновидности фрезерных станков в соответствии с классификацией энимс
- •Особенности фрезерных станков с чпу
- •Поперечно-строгальные станки
- •Общие сведения о шпиндельных узлах металообратывающего оборудования
- •Ручные системы управления станками Основные понятия, требования, способы изменения и
- •Способы изменения и
- •Классификация систем ручного управления Многорукояточное управление. Однорукояточное. Селективное и преселективное управление
- •4. Электромеханическое управление
- •5. Гидравлическое управление.
- •6. Управление электромеханическими муфтами.
Кинематические группы и кинематические связи
Любое исполнительное движение в станке создается и реализуется с помощью кинематической группы включающей в себя источник движения, один или несколько исполнительных органов и пространственно-кинематических связей между ними, обеспечивающие требуемые параметры создаваемого группой движения при не регулируемом источнике движения кинематическая группа может содержать орган настройки. Название кинематической группы соответствует названию создаваемого ею движения, например: формообразующая группа, группа деления и т.д.
Под исполнительными органами в МРС понимают подвижные конечные звенья кинематической группы, которые непосредственно участвуют в создании траектории исполнительного движения.
Орган, осуществляющий абсолютное или относительное движение заготовки и инструмента непосредственно в процессе формообразования поверхности называется рабочим.
Например: шпиндель, стол, салазки, суппорт, консоль, планшайба и т.д. В большинстве случаев исполнительные органы, в том числе и рабочие, совершают вращательное и поступательное движение, т.е. они являются подвижными звеньями вращательной или поступательной парой называемой исполнительной.
Пространственно-кинематическая связь – под ней понимается такая связь между любыми станками, в том числе и между исполнительными органами, которая не позволяет им относительно друг друга занимать произвольные положения и иметь произвольные скорости. Подобной связью между исполнительными органами, а так же между источниками движения и исполнительными органами осуществляется через кинематические цепи и каналы, связи, реализующиеся с помощью механических и немеханических средств, поэтому пространственно-кинематические связи подразделяются на механические и немеханические.
Механические связи и цепи реализуется с помощью механических звеньев, передач, устройств и т.д. Немеханические – с помощью электрических, гидравлических, пневматических и т.д. устройств.
Структурно пространственно-кинематические связи (ПКС) подразделяются на внешние и внутренние.
Под внешней ПКС понимают совокупность всех звеньев кинематических пар, устройств, и источников движения, т.е. такие его параметры как скорость и направление, а в некоторых случаях путь и исходная точка.
Под внутренней ПКС понимается совокупность всех аналогичных звеньев, обеспечивающих качественную характеристику требуемого движения, т.е. условие получения движения с требуемой траекторией и необходимой точности её формы.
Пример: винторезная цепь в токарном станке.
Упрощенные кинематические связи в МРС изображаются в виде схем, называемых структурными. Условные обозначения в структурных схемах:
Каждая связь или цепь в структурных схемах характеризуется тремя параметрами:
Расчет на перемещение (РП)
Уравнение кинематического баланса (УКБ)
Уравнение настройки (УН)
Расчёт на перемещение.
Это соотношение, показывающее связь между количеством движения начального и конечного звена цепи.
Уравнение кинетического баланса – это уравнение, показывающее связь между количествами движения начального и конечного звена цепи с учётом передаточных отношений всех промежуточных передач.
Уравнение настройки выводиться из уравнения кинетического баланса и позволяет определить передаточное отношение органа настройки. Для структурных схем УКБ и УН записывается в общем виде.
Пример 1:
Структурная схема вертикально фрезерного станка.
Цепь главного движения, электродвигатель М1 – начальное звено, шпиндель – конечное звено.
Главное движение В1
Расчётное
перемещение:
УКБ: первым сомножителем левой части УКБ является левая часть РП, правая часть УКБ соответствует правой части РП:
где
- общее передаточное отношение всех
постоянных передач цепи, расположенных
как до и после множительной части.
- передаточное
отношение органа настройки
УН:
режимов
резки
Цепи (движения) подач
мм/мин
РП:
УКБ:
УН:
Пример 2:
Структурная схема токарного станка
Главное движение
РП:
УКБ:
УН:
Продольная подача П2
РП: 1 об/шпин
УКБ:
Где
модуль
число зубьев реечного колеса.
УН:
Поперечная передача
РП:
УКБ
УН:
Пример 3
Цепь обката зубодолбёжного станка
РП:
Z – число зубьев
об
заготовки
УКБ:
УН:
В станках с ЧПУ каждый исполнительный орган, в том числе и рабочие органы, имеет отдельный источник движения, причем в большинстве случаев эти источники движения регулируемые, т.е. они сами являются органами настройки.
В станках с ЧПУ механические связи стараются свести к минимуму и заменить их на немеханические: электрические и электронные. Различают наипростейшую, простейшую и простую механическую связь в станках с ЧПУ.
1. При наипростейшей связи источник движения связывается с помощью муфты непосредственно с рабочим органом.
– главное движение
РП:
УКБ:
УН:
– движение подач
РП:
УКБ:
УН:
2. Простейшая связь – используются постоянные передачи, ременная в приводе главного движения и зубчатые в виде редуктора в приводе подач.
– главное движение
РП:
УКБ:
УН:
– движение подач
РП:
УКБ:
УН:
3. Простая связь – используется в приводе главного движения за счет использования кроме постоянных передач еще и АКС (АКПП).
– главное движение
РП:
УКБ:
УН:
