- •1. Предмет разведочной геофизики. Геофизическое поле: определение, основные классификации.
- •2. Виды геофизических исследований
- •3. Принципы обработки геофизической информации: аддитивность геофизического поля, частотное разложение полей. Принцип комплексирования.
- •Частотное представление геофизического поля
- •Принцип комплексирования геофизических исследований
- •4. Природа гравитационного поля Земли. Сила тяжести. Связь ускорения свободного падения с плотностью горных пород.
- •5. Нормальная составляющая гравитационного поля. Аномалии в редукции Фая и Буге.
- •Аномалии силы тяжести
- •6. Плотность горных пород. Структурно-вещественные факторы, влияющие на плотность горных пород и руд.
- •7. Аппаратура и методика гравиметрической съемки. Гравиметрическая аппаратура
- •Методика гравиметрической съемки
- •8. Геологические задачи, решаемые гравиразведкой.
- •9. Физические основы сейсморазведки: сейсмические волны, сейсмические границы, геолого-структурные факторы, влияющие на скорость распространения упругих волн.
- •Скорость сейсмических волн
- •10. Типы сейсмических волн, используемых в сейсморазведке.
- •11. Геологические задачи, решаемые сейсморазведкой.
- •12. Магнитные свойства основных типов горных пород: магматических, осадочных, метаморфических, рудных.
- •13. Аппаратура и методика магнитной съемки. Геологические задачи, решаемые магниторазведкой.
- •Методика магнитной съемки
- •28. Геологические задачи, решаемые магниторазведкой.
- •14. Природа постоянного электрического тока в горных породах. Удельное электрическое сопротивление основных типов минералов и горных пород. Электромагнитные свойства горных пород
- •Удельное электрическое сопротивление
- •15. Естественные электрические поля гальванического и кинетического происхождения.
- •16. Вызванная поляризуемость горных пород, измерение поля вп.
- •17. Способы возбуждения переменного электромагнитного поля в горных породах. Глубина проникновения электромагнитных волн.
- •18. Электропрофилирование: определение, задачи, типы установок (сэп, сг), решаемые задачи.
- •19. Электрозондирование: определение, виды (вэз, чз), решаемые задачи. Электротомография.
- •Электротомография
- •20. Объемное геоэлектрическое картирование методом заряда: рудный и гидрогеологический варианты.
- •21. Объемное геоэлектрическое картирование методом радиоволнового просвечивания.
- •22. Геоэлектрохимические методы: метод частичного извлечения металлов.
- •23. Систематика и краткая характеристика методов ядерной геофизики.
- •24. Главные закономерности распределения естественных радионуклидов в горных породах.
- •25. Гамма – спектрометрический метод: физическая основа, разновидности, круг решаемых геологических задач.
- •26. Эманационный метод: физическая основа, разновидности, круг решаемых задач.
- •27. Нейтронный метод: физическая основа, круг решаемых геологических задач.
8. Геологические задачи, решаемые гравиразведкой.
Гравиразведка применяется для решения широкого круга задач,связанных с исследованием глубинного строения Земли, по крайней мере, верхней мантии и земной коры, с региональным тектоническим районированием суши и океанов, поисково-разведочными работами на многие полезные ископаемые, изучением геологической среды.
1) использование общих гравиметрических съемок
Общими мелкомасштабными съемками с гравиметрами и маятниковыми приборами покрыта с той или иной детальностью территория суши и океанов Земли. Наибольший геологический интерес представляют результаты общих гравиметрических съемок с точки зрения изучения земной коры, и в частности определения ее мощности, строения, изостазической уравновешенности, тектонического районирования.
Как известно, в первом приближении Землю можно подразделить на три геосферы с четко отличающимися физическими свойствами: земную кору, мантию и ядро. В результате гравиметрических исследований обширных территорий континентов и океанов устанавливается примерно следующая зависимость между мощностью земной коры (H) и аномалией силы тяжести (∆ g) (рис. 1.11).
Рис.1.11 Зависимость аномалий силы тяжести в редукции Буге от мощности земной коры: I, II, III - геосинклинальный, платформенный и океанический тип земной коры
Установлено, что в геосинклинальных областях отмечаются интенсивные отрицательные аномалии $\Delta g_{Б}$ , платформы характеризуются небольшими аномалиями разного знака, а на океанах - положительные аномалии, причем тем большие, чем меньше мощность земной коры. Объясняется это тем, что подошва земной коры (граница Мохоровичича) отделяет породы разной плотности - 2,7 г/см3 сверху и 3,2 г/см3 снизу и кривая $\Delta g_{Б}$ отражает форму границы Мохоровичича. Такая закономерность свидетельствует о том, что Земля находится в состоянии, близком к изостатической компенсации.
2) гравиразведка при региональном тектоническом районировании
Гравиразведка в полном комплексе с другими геофизическими методами широко используется при региональном тектоническом районировании суши и акваторий. Она дает информацию о главных структурных этажах и общем тектоническом строении крупных регионов. С помощью гравиразведки аномалиями типа ступени выявляются отдельные блоки земной коры и фундамента, глубинные разломы, сбросы; отрицательными аномалиями картируются синклинории, горсты, осадочные бассейны, прогибы фундамента, гранитные массивы среди других изверженных пород фундамента, рифтовые и солевые бассейны, океанические хребты и желоба в океанах и др; положительными аномалиями выделяются антиклинории, поднятия фундамента, грабены и другие структуры.
3) применение гравиразведки для поисков и разведки полезных ископаемых
Гравиразведка применяется для поисков и разведки нефтяных структур, угольных бассейнов, рудных и нерудных полезных ископаемых.
Остановимся на краткой характеристике этих областей применения гравиразведки. Гравиразведка применяется для разведки следующих нефтяных структур: соляных куполов, антиклинальных складок, рифтовых массивов, куполовидных платформенных структур.
Гравиразведка применяется в комплексе с другими геофизическими методами и для разведки рудных и нерудных ископаемых, причем она привлекается как для крупномасштабного картирования и выявления тектонических зон и структур, благоприятных залеганию тех или иных ископаемых, так и для непосредственных поисков и разведки месторождений. Существенное отличие рудной гравиразведки от нефтяной состоит в меньшей глубинности, большей детальности и точности разведки. Классическим примером применения гравиметрии являются поиски и разведка железорудных месторождений (особенно КМА и Кривой Рог), где гравиразведка применяется для изучения структуры бассейна, картирования железорудной толщи и поисков богатых руд. На железорудных месторождениях наблюдаются локальные положительные аномалии за счет высокой плотности железосодержащих руд. Хромитовые, полиметаллические и другие залежи рудных и нерудных ископаемых практически всегда отличаются от вмещающих пород по плотности. Поэтому для их обнаружения гравиразведка с успехом применяется.
4) роль гравиразведки в изучении геологической среды
Непосредственно для изучения геологической среды, т.е. верхней части (100 - 200 м) оболочки Земли, где интенсивно идут экзогенные и техногенные процессы, гравиразведка применяется редко. Однако крупномасштабные гравиметрические карты вместе с картами дешифрирования аэрокосмических снимков являются основой для проектирования и обработки результатов любых геофизических методов, применяемых для инженерно-геологических, мерзлотно-гляциологических, гидрогеологических и экологических исследований. При этом главное, что дает гравиразведка, - это выявление тектонических нарушений, расчленение рыхлых и скальных пород, определение зон трещиноватости и закарстованности, нахождение погребенных объектов и т.п.
