Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Л_8.7_ Попер.изгиб.прям. пластин.docx
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
2.64 Mб
Скачать

11. Устойчивость пластинок

Пластинка является наиболее характерным элементом конструкции самолёта и двигателя. С ней обычно отождествляют элемент обшивки крыла, фюзеляжа, оперения летательного аппарата, стенку лонжерона, нервюры, шпангоута.

Основной особенностью пластинки является её способность воспринима-ть только распределённую нагрузку, действующую главным об­разом в её плоскости, (рис. 11.1)

Обычная пластинка при дейст­вии распределенной поперечной нагрузки р аботает как широкополая; балка сплошного поперечного сечения, но при этом наблюдаются две особенности:

- при изгибе из-за стеснения поперечных деформаций пластинка оказывается несколько более жест­кой, чем узкая балка той же площади

цилиндрическая жёсткость - выше обычной ;

Рис. 11.1. Нагружение пластины - граничные условия для пластинки более разнообразны, так как включают опирание продольных кромок (рис. 11.2), свободных у балки.

Р аспределённую попе-речную нагрузку пластинка воспринимает плохо и в этом отношении не является рациональным элементом, по­скольку работает на изгиб. По этой причине пластинке присущи все недостатки балки сплошного попереч-ного сечения. Обычно применяют пластинки, под-креплённые рёбрами жёсткости (стрингерами, Рис. 10.2. Схемы опирания пластины нервюра­ми) - панели.

Значительно лучше пластинка работает на восприятие нагрузок, прило-женных в её плоскости (растяжение, сжатие, сдвиг).

При растяжении пластинки разрушаются при достижении в материа­ле напряжений уровня σb (предел прочности при растяжении).

При сжатии и сдвиге пластинки разрушаются из-за потери устой­чивости. Нагрузки и напряжения, действующие в момент потери устойчивости, принято называть критическими.

Рассчитать величину указанных напряжений можно с использовани­ем дифференциального уравнения продольно-поперечного изгиба.

11.1. ДИФФЕРЕНЦИАЛЬНОЕ УРАВНЕНИЕ ПОПЕРЕЧНОГО ИЗГИБА ПЛАСТИНЫ.

При условии выполнения для материала закона Гука уравнение имеет вид:

(11.1)

где: W, D- прогиб и цилиндрическая жесткость пластинки;

 - распределённая по площади поперечная нагрузка;

Nx - распределённые по ширине пластинки погонные усилия;

ny - распределённые по длине пластинки погонные усилия;

q- погонные касательные усилия.

Решение дифференциального уравнения (11.1) заключается в нахож­дении такой функции W(x,y) , которая в каждой точке, взятой внутри пластинки, обращает данное уравнение в верное равенство, а на контуре удовлетворяет ещё и граничным условиям (11.2).

Рассмотрим решение дифференциального уравнения (11.1) в упрощён­ном виде при действии распределённой сжимающей нагрузки только в направлении оси X (рис. 11.3). Граничные условия - шарнирное опирание по 4-м кромкам ( рис. 11.2, в).

(11.2)

Рис.11.3 Нагружение и опирание сжатой пластинки

Применим метод подбора решения. Можно проверить, что по край­ней мере граничным условиям (1.2в) удовлетворяет функция:

(11.3)

где m и п - целые числа I, 2 …

f - некоторый коэффициент.

Эта же функция похожим образом описывает и форму поверхности пластинки после потери устойчивости.

Будем поэтому считать (11.3) приближённым решением (11.1). Нас будет интересовать вопрос, при каких значениях нагрузки начальная форма плоского равновесия перестаёт быть устойчивой (w 0)

Для этого в дифференциальное уравнение (11.1) подставим (11.3).

Подготовим значения производных для подстановки.

Результаты подстановки после сокращения на общий множитель

После очевидных преобразований имеем:

и

Обычно n = 1 (вдоль оси y образуется только одна полуволна), поэтому

.

Учитывая, что

имеем

.

Величина

,

а величина обозначается как k.

Окончательно (11.5)

График функции Кσ = f(а/b) для различных форм потери устой­чивости при шарнирном опирании по 4 кромкам приведен на рис.1.4.

Рис. 11.4. График функции Кσ = f(а/b)

Реализуется всегда наименьшее значение критических напряжений, отсюда всегда можно определить заранее, по какой форме пластинка потеряет устойчивость, если её размеры известны.

При пользовании формулой (11.5) следует учитывать, что небез­различно, как ориентирована пластинка в системе координат X, У . Размер "а" следует брать в направлении действующей сжимающей на­грузки (Рис.11. 4).

В случае других форм опира-ния следует пользоваться специаль-ными таблицами и графиками, в частности, графиком, приведенным на рис. 11.5.