- •1. Ткань – это система клеток и внеклеточных структур, объединенных единством происхождения, строения и функций.
- •2.Гуморальная и нервная регуляции. Определение, сравнительная характеристика.
- •3.Синдром Шерешевского – Тернера.
- •4.Общая характеристика дистрофий.
- •2.Строение, расположение сердца. Значение сердца, значение клапанов, проводящей системы. Круги кровообращения.
- •3.Галактоземия.
- •4.Мезенхимальные белковые дистрофии. К мезенхимальным диспротеинозам относятся следующие процессы: Муко́идное набухание, Фибрино́идное набухание, Гиалино́з, Амилоидо́з.
- •2.Физиология сердца.
- •2) Органоиды. К ним относятся: эндоплазматическая сеть, рибосомы, аппарат Гольджи, лизосомы, митохондрии, клеточный центр.
- •1. Дыхательный объем - это количество воздуха, которое поступает и выводится из легких при спокойном дыхании. У взрослого здорового человека он колеблется в пределах 500-600 мл.
- •2. Резервный объем вдоха- это максимальное количество воздуха, которое может поступить в легкие после спокойного вдоха. Этот объем составляет 1500-2500 мл.
- •3. Резервный объем выдоха - это максимальное количество воздуха, которое может вывестись из легких после спокойного выдоха. Резервный объем выдоха составляет 1000-1500 мл.
- •3.Взаимодействие неаллельных генов
- •2.Фенилкетонурия. В чём суть заболевания. К какой группе заболеваний относится. Диагностика. Симптомы, позволяющие заподозрить заболевание. Прогноз и лечение.
- •2.Кровообращение органов малого таза и нижних конечностей. Кровоснабжение органов малого таза:
- •1) Изучил и объяснил течение реакции «стресс»;
- •3) Подробно изучил и показал значение эндокринной системы в развитии стресс-реакции, а именно ее гипофизарно-надпочечниковой части.
- •1. Типы
- •1. Смертность
- •1. Внутренние мышцы таза — mm. Iliopsoas, piriformis, obturatorius internus.
- •2. Наружные мышцы таза — mm. Gluteus maximus, gluteus medius, gluteus minimus, quadratus femoris, gemellus superior, gemellus inferior, tensor fasciae latae, obturatorius externus.
- •1. Передняя группа: m. Sartorius, m. Quadriceps femoris;
- •2. Медиальная группа: m. Gracilis, m. Pectineus, m. Adductor longus, m. Adductor brevis, m. Adductor magnus;
- •3. Задняя группа: m. Biceps femoris, m. Semitendinosus, m. Semimembranosus.
- •3. Электролитные свойства зависят от содержания в плазме крови анионов и катионов. Электролитные свойства крови определяются осмотическим давлением крови.
- •1. Транспортную — в ней выделяют ряд подфункций:
- •2. Защитную — обеспечение клеточной и гуморальной защиты от чужеродных агентов.
- •3. Гомеостатическую — поддержание постоянства внутренней среды организма (кислотно-основного равновесия, водно-электролитного баланса и др.)
- •1) Избыточное накопление его в жировой клетчатке — ожирение
- •2) Церебральное ожирение — имеет место при патологии головного мозга
- •3) Эндокринное ожирение .
- •3,4,5,7 И др. Типы напоминают клиническую картину первого.
- •4. Полигенно-мультифакторное наследование. 5. Метаболические нарушения, такие как диабет, фенилкетонурия.6)курение и т.Д.
- •1. Шейное сплетение и его ветви:
2) Органоиды. К ним относятся: эндоплазматическая сеть, рибосомы, аппарат Гольджи, лизосомы, митохондрии, клеточный центр.
а) Митохондрии - это энергетические станции клетки. Они образуют и накапливают энергию в виде АТФ. Митохондрии имеют 2 мембраны: наружную гладкую и внутреннюю, образующую складки (кристы), что увеличивает внутреннюю поверхности, митохондрий. На внутренней мембране синтезируется АТФ (аденозинтрифосфорная кислота).
б) Рибосомы - состоят из 2-х субчастиц: большой и малой, состоящих из белка и рибосомальной рнк. Между большой и малой частями находится Функциональная зона, в которой проходит и-РНК, в большой субъединице образуются полипептидные связи между аминокислотами в процессе синтеза белка.
в) клеточный центр - состоит из 2-х центриолей, расположенных под прямым углом друг к другу. Каждая центриоль-цилдиндр, состоящий из 2 триплетов микротрубочек. Клеточный центр растягивает хроматиды (хромосомы) во время деления клетки, обеспечивая равноценное распределение генетического материала между дочерними клетками.
3) Включения- непостоянные компоненты клетки. Их можно разделить на несколько групп: 1) трофические (питательные): жиры, углеводы; 2) секреторные (нужные организму): гормоны, ферменты; 3) экскреторные (ненужные и подлежащие выделению из организма): мочевая, кислота и др.; 4) пигментные:: меланин (коричневый пигмент).
Строение хромосом
Хромосомы - это интенсивно окрашенное тельце, состоящее из молекулы ДНК, связанной с белками-гистонами. Хромосомы формируются из хроматина в начале деления клеток (В профазе митоза).
Хромосомы состоят из 2 сестринских хроматид (удвоенных молекул ДНК), соединенных друг с другом в области первичной перетяжки - центромеры.
Центромера делит хромосому на 2 плеча. В зависимости от расположения центромеры хромосомы бывают; 1) метацентрические центромера расположена в середине хромосомы и плечи ее равны; 2)субметацентрические центромера смещена от середины хромосом и одно плечо короче другого;
3) акроцентрические - центромера расположена близко к концу хромосомы. И одно плечо значительно короче другого. В некоторых хромосомах есть вторичные перетяжки, отделяющие от плеча хромосомы участок, называемый спутником, из которого в интерфазном ядре образуется ядрышко
Значение воды в организме. Нарушение водного обмена. Виды отёков.
В организме взрослого человека содержится от 55 до 65% воды. С возрастом количество воды снижается, что является одной из причин старения, т. е. понижаются способности коллоидных веществ, особенно белков, связывать большое количество воды. Около 62% воды находится внутри клеток, а 38% — в составе внеклеточной жидкости. Вода является обязательным компонентом многочисленных химических реакций и физико-химических процессов. Организм строго регулирует содержание воды в организме, в каждом органе и тканях. Это — одно из главных условий нормальной жизнедеятельности организма.
нарушение водного обмена - Содержание воды в организме взрослого человека составляет в среднем 60% от массы тела, колеблясь от 45 (у тучных пожилых людей) до 70% (у молодых мужчин). Большая часть воды (35-45% от массы тела) находится внутри клеток. Внеклеточная жидкость составляет 15-25% от массы тела и подразделяется на внутрисосудистую (5%), межклеточную (12-15%) и трансцеллюлярную (1-3%).
Известны две формы нарушения водного обмена: обезвоживание организма (дегидратация) и задержка жидкости в организме (избыточное скопление ее в тканях и серозных полостях).
Нарушение водного обмена.
Вода организма находится в разных состояниях и структурных пространствах.
Водный баланс представляет собой уравновешивание трех процессов:
Поступление воды в организм с пищей и питьем;
Образование в процессе обмена веществ так называемой эндогенной воды;
Выделение воды из организма;
Гипогидратация – уменьшение количества жидкости в организме. Гипогидратация характеризуется преобладанием потерь воды над ее поступлением в организм и обозначается как отрицательный водный баланс.
Гипергидратация - увеличение количества жидкости в организме, характеризуется преобладанием и обозначается как положительный водный баланс.
Отечная жидкость может иметь различный состав и консистенцию и представлена в виде:
Транссудата- бедной белком жидкости.
Слизи – представляющей собой смесь из воды и коллоидов межуточной ткани.
Отёки классифицируют в зависимости от их локализации, распространённости, скорости развития и по основному патогенетическому фактору развития отёка.
• В зависимости от местоположения отёка различают анасарку и водянки.
- Анасарка — отёк подкожной клетчатки.
- Водянка — отёк полости тела (скопление в ней транссудата).
- Асцит — скопление избытка транссудата в брюшной полости.
- Гидроторакс — накопление транссудата в грудной полости.
- Гидроперикард — избыток жидкости в полости околосердечной сумки.
- Гидроцеле — накопление транссудата между листками серозной оболочки яичка.
- Гидроцефалия — избыток жидкости в желудочках мозга (внутренняя водянка мозга) и/или между мозгом и черепом — в субарахноидальном или субдуральном пространстве (внешняя водянка мозга).
• В зависимости от распространённости различают местный и общий отёки. - Местный (например, в ткани или органе в месте развития воспаления или аллергической реакции).
- Общий — накопление избытка жидкости во всех органах и тканях (например, гипопротеинемические отёки при печёночной недостаточности или нефротическом синдроме).
• В зависимости от скорости развития отёка говорят о молниеносном и остром развитии или хроническом течении отёка.
- Молниеносный отёк развивается в течение нескольких секунд после воздействия (например, после укуса насекомых или змей).
- Острый отёк развивается обычно в пределах часа после действия причинного фактора (например, отёк лёгких при остром инфаркте миокарда). - Хронический отёк формируется в течение нескольких суток или недель (например, нефротический, отёк при голодании).
• В зависимости от основного патогенетического фактора различают гидродинамический, лимфогенный, онкотический, осмотический и мембраногенный отёки.
Билет № 5
Кости туловища и плечевого пояса. Соединение костей черепа. Череп в целом. Соединение головы с туловищем. . Кости туловища
Позвоночный столб (columna vertebralis) состоит из 32—34 позвонков:
шейные позвонки (7, vertebrae cervicales), в т.ч. атлант (atlas) и эпистрофей (axis);
грудные позвонки (12, vertebrae thoracicae);
поясничные позвонки (5, vertebrae lumbalis);
крестцовые позвонки (5, vertebrae sacralis) срослись в крестец (os sacrum);
копчиковые позвонки (3—5, vertebrae coccygae) срослись в копчик (os coccygis).
Грудная клетка (compages thoracis) состоит из 37 костей (из них 12 грудных позвонков относятся ещё и к позвоночнику):
рёбра (costae) (12×2);
грудина (sternum).
Плечевой пояс (пояс верхних конечностей) — совокупность костей (пары лопаток и ключиц) и мышц, обеспечивающих опору и движение верхних (передних) конечностей. У некоторых животных имеется третья парная кость плечевого пояса — коракоид. Кости плечевого пояса соединены акромиально-ключичными сочленениями. С грудной клеткой плечевой пояс соединяется посредством грудиноключичных сочленений и мышц, удерживающих лопатку, со свободной верхней конечностью — посредством плечевых суставов.[1]
Череп, представляет собой комплекс костей, прочно соединенных швами, служащих опорой и защитой различным по происхождению и функциям органам. В полостях черепа расположены головной мозг, органы зрения, слуха, обоняния, вкуса и начальные отделы пищеварительной и дыхательной систем. Череп подразделяют на два отдела. Отдел, в котором помещается головной мозг, называют мозговым черепом. К этому отделу относятся непарные кости: лобная, клиновидная, затылочная, решетчатая — и парные кости: теменная и височная. Второй отдел, образующий костную основу лица и начала пищеварительной и дыхательной трубок,— это лицевой (висцеральный) череп. Лицевой череп располагается под мозговым. Значительную часть лицевого черепа занимает скелет жевательного аппарата, представленный парной верхнечелюстной костью и непарной нижней челюстью, подвижно сочлененной с черепом. Остальные кости лица небольших размеров. Это парные кости: нижняя носовая раковина, небная, носовая, слезная, скуловая, а также непарные кости: сошник и подъязычная, которые входят в состав стенок глазниц, носовой и ротовой полостей и определяют конфигурацию лицевого отдела черепа. Некоторые кости мозгового и лицевого отделов черепа имеют внутри полости, заполненные воздухом и сообщающиеся с полостью носа. Пневматизация костей уменьшает массу черепа при сохранении его прочности. Особое место занимает подъязычная кость, расположенная в передней области шеи и соединенная с костями черепа связками и мышцами.
Соединяется шейным отделом позвонков
Макроскопическое и микроскопическое строение легких. Расположение легких Плевральные синусы. Рефлекс вдоха и выдоха.
.Лёгкие— парный орган дыхания. Лёгкие заложены в грудной полости, прилегая справа и слева к сердцу. Они имеют форму полуконуса, основание которого расположено на диафрагме, а верхушка выступает на 1-3 см выше ключицы. Правое лёгкое состоит из 3, а левое из 2 долей. Скелет лёгкого образуют древовидно разветвляющиеся бронхи. Каждое лёгкое покрыто серозной оболочкой — лёгочной плеврой и лежит в плевральном мешке. Внутренняя поверхность грудной полости покрыта пристеночной плеврой. Снаружи каждая из плевр имеет слой железистых клеток, выделяющих плевральную жидкость в плевральную щель (пространство между стенкой грудной полости и лёгким). С внутренней (сердечной) поверхности в лёгких имеется углубление — ворота лёгких. В них входят бронхи, лёгочная артерия, и выходят две лёгочных вены. Лёгочная артерия ветвится параллельно ветвлению бронхов.
Ткань лёгкого состоит из пирамидальной формы долек (длиной 25 мм, шириной 15 мм), основание которых обращено к поверхности. В вершину дольки входит бронх, который последовательным делением образует в ней 18-20 концевых бронхиол. Каждая из последних заканчивается структурно-функциональным элементом лёгких — ацинусом. Ацинус состоит из 20-50 альвеолярных бронхиол, делящихся на альвеолярные ходы; стенки тех и других густо усеяны альвеолами. Каждый альвеолярный ход переходит в концевые отделы — 2 альвеолярных мешочка.
Альвеолы (диаметр — 0,15 мм) представляют собой полушаровидные выпячивания и состоят из соединительной ткани и эластичных волокон, выстланы тонким прозрачным эпителием и оплетены сетью кровеносных капилляров. В альвеолах происходит газообмен между кровью и атмосферным воздухом. При этом кислород и углекислый газ проходят в процессе диффузии путь от эритроцита крови до альвеолы, преодолевая суммарный диффузионный барьер из эпителия альвеол, базальной мембраны и стенки кровеносного капилляра.
Регуляция дыхания
Дыхание регулируется в центрах вдоха и выдоха. Одни рецептивные поля находятся в районе дыхательного центра на границе между продолговатым мозгом и задним. Рецепторы, с помощью которых происходит регуляция дыхания, располагаются на кровеносных сосудах (хеморецептор, реагирующий на концентрацию диоксида углерода и, в меньшей степени, кислорода), на стенках бронхов (баррорецепторы, реагирующие на давление в бронхах). Некоторые рецептивные поля находятся в каротидном синусе (место расхождения внешних и внутренних сонных артерий). Также симпатическая и парасимпатическая системы могут изменять просвет бронхов.
Генетика пола. Заболевания передающиеся сцеплено с полом. Признаки зависящие от пола.
Генетика пола Рассмотрим хромосомный набор человека. Он содержит 22 пары хромосом, одинаковых у мужского и женского организма, и одну пару хромосом, по которой различаются оба пола. Хромосомы, одинаковые у обоих полов, называют аутосомами. Хромосомы, по которым мужской и женский пол отличаются друг от друга – это половые или гетерохромосомы. Половые хромосомы у женщин одинаковы, их называют Х-хромосомами. У мужчин имеется Х-хромосома и одна Y-хромосома.
В результате гаметогенеза все яйцеклетки имеют по одной Х-хромосоме, а сперматозоиды – гаметы двух сортов: половина несет Х-хромосому, половина — Y-хромосому. Пол потомка зависит от того, какой спермий оплодотворит яйцеклетку. Если яйцеклетка оплодотворяется сперматозоидом, несущим Х-хромосому, развивается женский организм. Если яйцеклетка оплодотворяется сперматозоидом, несущим Y-хромосому, развивается мужской организм. В результате случайного оплодотворения половина гамет получает Х-хромосому, другая половина Y-хромосому. Поэтому у раздельнополых организмов соотношение полов обычно составляет 1:1, т.е. самцы и самки встречаются одинаково часто.
Женщины (XХ) имеют одну Х-хромосому от отца и одну Х-хромосому от матери. Мужчина (XY) получает Х-хромосому только от матери. Этим обусловлена особенность наследования генов, расположенных в половых хромосомах.
Пол, содержащий в своих клетках две Х-хромосомы, называется гомогаметным, так как он дает все гаметы одинаковые, а содержащий и Х– и Y-хромосомы, образующий два типа гамет – гетерогаметным.
Y-хромосому часто называют генетически инертной или генетически пустой, так как в ней очень мало генов. У человека на У-хромосоме располагается ряд генов, регулирующих сперматогенез, проявления антигенов гистосовместимости, влияющих на размер зубов и т. д. Известны аномалии, сцепленные с Y-хромосомой, которые от отца передаются всем сыновьям (чешуйчатость кожи, перепончатые пальцы, сильное оволосение на ушах). У-хромосома передается от отца всем его сыновьям, и только им. Следовательно, для генов, содержащихся только в У-хромосоме, характерно голандрическое наследование, т. е. они передаются только от отца к сыну и проявляются у самцов.
Х-хромосома несет много различных признаков. Описано более 370 болезней сцепленных с ней. В женском организме (XX) каждый признак по генам, будет являться либо гомо-, либо гетерозиготным. Поскольку у особей мужского пола одна Х-хромосома, то все локализованные в ней гены, даже рецессивные, сразу же проявляются в фенотипе.
У человека некоторые патологические состояния наследуются сцеплено с полом. К ним относится, например, гемофилия (повышенная кровоточивость), дальтонизм (аномалия зрения, при которой человек недостаточно различает красный и зеленый цвета). Дальтонизм, частичная цветовая слепота, один из видов нарушения цветового зрения. Это заболевание впервые описано в 1794г. Дальтонизм встречается у 8% мужчин и у 0,5% женщин.
Гемофилия — сцепленное с полом рецессивное заболевание, при котором нарушается образование фактора VIII, ускоряющего свертывание крови.
Ген находится в Х-хромосоме. Кровоточивость при гемофилии проявляется с раннего детства. Даже лёгкие ушибы вызывают обширные кровоизлияния – подкожные, внутримышечные. Порезы, удаление зуба и др. сопровождаются опасными для жизни кровотечениями, могут вызвать смерть. Молекулярный дефект в Х– хромосоме способен самым жестоким образом распоряжаться жизнью многих поколений его потомков. Гемофилия А поражает почти исключительно людей мужского пола. В среднем, один из 10 000 мальчиков рождается с этой патологией, и только в 70% случаев в его родословной можно найти указания на наследственную передачу мутантного гена.
Атрофия. Определение. Формы. Некроз.
Атрофия (от греч. atropheo) — голодаю, чахну), прижизненное уменьшение размеров органа или ткани организма животных и человека, сопровождающееся нарушением или прекращением функции. А. является результатом преобладания диссимиляции над процессами ассимиляции. А. может быть физиологической и патологической, общей и местной.
Физиологическая А. зависит от возрастных изменений организма (А. вилочковой железы в период полового созревания, А. половых желёз, кожи, костей у стариков и т. п.).
Общая патологическая А. (истощение, кахексия) развивается при недостаточном питании, хронической инфекции или интоксикации, нарушении деятельности эндокринных желёз или центральной нервной системы.
Местная патологическая А. возникает от разнообразных причин: при нарушении нейротрофической регуляции (например, А. скелетных мышц при полиомиелите); от недостаточности кровоснабжения (например, А. коры головного мозга при атеросклерозе мозговых сосудов);
При А. орган уменьшается в размерах, но иногда впоследствии, при разрастании жировой ткани, заменяющей атрофированные клеточные элементы, выглядит увеличенным.
Патологическая А. до определённой стадии — процесс обратимый.
Лечение: устранение причины, вызывающей А.
Некро́з (от греч. νεκρός — мёртвый), или омертве́ние — это патологический процесс, выражающийся в местной гибели ткани в живом организме в результате какого-либо экзо- или эндогенного её повреждения. Некроз проявляется в набухании, денатурации и коагуляции цитоплазматических белков, разрушении клеточных органелл и, наконец, всей клетки. Наиболее частыми причинами некротического повреждения ткани являются: прекращение кровоснабжения (что может приводить к инфаркту, гангрене) и воздействие патогенными продуктами бактерий или вирусов (токсины, белки, вызывающие реакции гиперчувствительности, и др.).
Классификации некроза
По этиологии Травматический (первичный и вторичный)Токсигенный Трофоневротический Ишемический
Клинико-морфологическая Коагуляционный некроз (сухой)Колликвационный некроз (влажный)
Казеозный некроз Секвестр (медицина)Гангрена Инфаркт Пролежни
По механизму возникновения
Прямой (токсический, травматический)
Непрямой (аллергический, ишемический, трофоневротический)
Причины некроза
Причиной гибели ткани может быть непосредственное разрушение их каким-либо агентом (физическим или химическим), а также косвенные изменения, такие как аллергическая реакция, нарушения иннервации и нарушения кровообращения.
Действие на ткани температуры выше 60° или ниже −15° приводит к быстрой их гибели, некрозам (ожоги, обморожения).
Ценкеровский (восковидный) некроз — сухой некроз мышц, при котором очаги имеют серо-жёлтый цвет с сальным блеском (сходство с воском). Наблюдается при брюшном, сыпном тифе, травмах, судорожных состояниях.
Марантический некроз — развивается от длительного компрессионного сдавления тканей. Особенно выражен у истощённых больных, у которых он переходит в пролежни.
Гумматозный некроз — развивается в результате сифилиса. Гумма — гранулемное образование, чаще на коже лица, вызванное реакцией тканей на спирохет. Некротизированный центр окружён т. н. демаркационным воспалением, в центре гуммы — бесформенная масса расплавившихся тканей.
Билет № 6
Мышцы живота. Диафрагма.
Мышцы живота - делятся на группы мышц передней, боковой и задней стенок живота.
Мышцы боковых стенок брюшной полости: Мышцы передней стенки живота.
Прямая мышца живота -плоская длинная мышца, расположенная по сторонам от срединной белой линии живота. Она начинается от мечевидного отростка грудины, хрящей V— VII ребер и прикрепляется к лонной кости. На своем протяжении прерывается 3—4 поперечными перемычками. Наклоняет туловище вперед, является частью мышц брюшного пресса, тянет ребра вниз, поднимает таз.
Пирамидальная мышца начинается от лобкового гребня и прикрепляется к белой линии живота; натягивает белую линию живота. Мышцы боковых стенок брюшной полости. наружная косая мыш. Жив .начинается от наруж. поверхности 5-7ребер прикрепляется к гребню подвздошной кости, лобковому бугорку и образует паховую связку. Внутренняя косая мыш. Жив. Начинается от пояснично-грудинной фасции, гребня подвздошной кости и от паховой связки, мышечные пучки переходят в апоневроз и прикрепляются к хрящам нижних ребер. Поперечная мыш. Начинается от внутренней поверхности нижних ребер, пояснично-грудинной фасции, гребня подвздошной кости и паховой связки. Пучки мышеч. волокон переходят в широкий апоневроз, кот. участвует в образовании белой линии живота. Мышцы задней стенки брюшной полости: квадратная мыш.поясницы. начинается от подвздошного гребня , поперечных отростков 3-4нижних поясничных позвонков, прикрепляется к 7 ребру, поперечным отросткам верхних поясничных позвонков. Белая линия живота-образуется прикреплением волокон апоневрозов широких мышц живота имеет значительную прочность .Однако при наличии в ней щелей и отверстий может появиться грыжа белой линии живота. Функции - вместе с диафрагмой при одновременном действии создают функцию брюшного пресса, тем самым оказывая давление на внутренние органы, расположенные в ней. Такое давление способствует выведению наружу содержимого полостей внутренних органов (при рвоте, дефекации, мочеиспускании, во время родов). Кроме того, мышцы сгибают позвоночник вперед, приближая таз к грудной клетке. При приседаниях с большим весом создают поддерживающий каркас. Защищают внутренние органы от ударных поражений.
Диафрагма- мышечно-апоневротическое образование, отделяющее грудную полость от брюшной. Представляет собой плоскую тонкую мышцу, имеющую форму купола, обращенного выпуклостью вверх и покрытого пристеночным листком плевры. Нижняя поверхность Д. вогнута, обращена в брюшную полость и покрыта пристеночным листком брюшины. Мышечные волокна Д., начинаясь от краев нижнего отверстия грудной клетки, направляются радиально вверх и, соединяясь, образуют сухожильный центр. Через отверстия в Д. проходят нижняя полая вена, аорта, грудной проток, пищевод, блуждающие нервы, симпатические стволы, чревные нервы, непарная и полунепарная вены. При вдохе куполы Д. опускаются на 2—3 см и уплощаются
Воздухоносные пути. Органы выполняющие воздухоносную функцию Строение, расположение. Воздухоносные кости. Слизистая воздухоносных путей. Основная функция Д. — дыхательная. В результате движений Д., обусловливающих вместе с грудными мышцами вдох и выдох осуществляются основной объем вентиляции легких, а также колебания внутри плеврального давления, способствующие оттоку крови от органов брюшной полости и притоку ее к сердцу. Статическая (опорная) функция состоит в поддержании нормальных взаимоотношений между органами грудной и брюшной полостей, зависит от мышечного тонуса Д. Нарушение этой функции приводит к перемещению брюшных органов в грудную клетку.2 Различают верхние и нижние дыхательные пути. Символический переход верхних дыхательных путей в нижние осуществляется в месте пересечения пищеварительной и дыхательной систем в верхней части гортани. Система верхних дыхательных путей состоит из полости носа носоглотки и ротоглотки, а также частично ротовой полости, так как она тоже может быть использована для дыхания. Система нижних дыхательных путей состоит из гортани, иногда её относят к верхним дыхательным путям), трахеи бронхов . Стенка воздухоносных путей (в типичных случаях – в трахее, бронхах) состоит из четырех оболочек: слизистой оболочки; подслизистой основы; фиброзно-хрящевой оболочки; адвентициальной оболочки. При этом часто подслизистую основу рассматривают как часть слизистой оболочки, и говорят о наличии трехеоболочек в составе стенки воздухоносных путей (слизистой, фиброзно-хрящевой и адвентициальной).Все воздухоносные пути выстланы слизистой оболочкой. Она состоит из трех слоев, или пластинок: эпителия; собственной пластинки слизистой; гладкомышечных элементов (или мышечной пластинки слизистой). Воздухоносные кости имеют в своем теле полость, выстланную слизистой оболочкой и заполненную воздухом, например некоторые кости черепа - лобная, клиновидная, решетчатая, верхняя челюсть.
Значение и синтез белка. Связь синтеза белка с наследственными заболеваниями. 3 Белки— сложные, высокомолекулярные органические соединения, состоящие из аминокислот. Они представляют главную, важнейшую часть всех клеток и тканей животных и растительных организмов, без которой не могут осуществляться жизненно важные физиологические процессы. Белки играют ключевую роль в процессах жизнедеятельности любого организма. К числу белков относятся ферменты, при участии которых протекают все химические превращения в клетке (обмен веществ); они управляют действием генов; при их участии реализуется действие гормонов, осуществляется трансмембранный транспорт, в том числе генерация нервных импульсов. Они являются неотъемлемой частью иммунной системы (иммуноглобулины) и системы свертывания крови, составляют основу костной и соединительной ткани, участвуют в преобразовании и утилизации энергии и т. д. Синтез белка и фотосинтез относятся к реакциям пластического обмена. Синтез белков наиболее активно протекает в молодых растущих клетках. Основная роль в определении структуры белков принадлежит ДНК. Отрезок ДНК, содержащий информацию о структуре одного белка, называют геном. В молекуле ДНК закодирована последовательность аминокислот о белке в виде определенно сочетающихся нуклеотидов. Сущность кода ДНК состоит в том, что каждой аминокислоте соответствует участок гена из трех рядом стоящих нуклеотидов - триплет. Разных аминокислот 20, число возможных сочетаний из 4 нуклеотидов по 3 равно 64. Следовательно, триплетов с избытком хватает для кодирования всех аминокислот.
Этапы биосинтеза белка: Транскрипция - процесс синтеза на одной из цепей молекулы ДНК молекулы и-РНК по принципу комплементарности. Процесс происходит не на всей молекуле ДНК одновременно, а на небольшом ее участке, соответствующем одному гену. Трансляция - перевод информации с молекулы и-РНК в последовательность аминокислот полипептидной цепи, происходит в цитоплазме. Молекула и-РНК доставляется с помощью особого белка-фермента из ядра к рибосомам. Рибосома перемещается по молекуле и-РНК прерывисто, триплет за триплетом. По мере перемещения рибосомы к полипептидной цепочке одна за другой присоединяются аминокислоты. Точное соответствие аминокислоты триплету обеспечивает т-РНК (транспортная РНК). Для каждой аминокислоты существует своя т-РНК, один из триплетов которой (антикодон) комплементарен определенному триплету и-РНК. Конфигурация т-РНК напоминает лист клевера. К «черешку» листа присоединяется определенная аминокислота, а на «верхушке листа» расположен кодовый триплет нуклеотидов, соответствующий данной аминокислоте. На одной нити -РНК может одновременно располагаться несколько рибосом, образуя полисому. Биосинтез белка - сложный многоступенчатый процесс, представляющий цепь реакций, протекающих по принципу матричного синтеза. Суть реакций матричного синтеза состоит в том, что новые молекулы белка синтезируются в точном соответствии с планом, заложенным в структуре молекул ДНК.
Компенсаторно - приспособительные реакции. Определение, значение, виды.
Компенсаторно-приспособительные процессы — это морфологические и функциональные изменения в организме, направленные на восполнение утраченных функций, эти процессы сопровождаются повышением или нормализацией уровня жизнедеятельности и обеспечивают приспособление организма к изменившимся условиям существования при патологических состояниях. Механизмы компенсаторно-приспособительных реакций многообразны. Среди них наиболее важными являются саморегуляция жизненно важных показателей гомеостаза, сигнальность отклонения и дублирование физиологических процессов. Дублирование - Сущность этого механизма состоит в том, что поддержание какого-либо жизненно важного показателя внутренней среды организма принимает участие не один орган или система, а их совокупность. В том случае, если функция одного из них оказывается недостаточной, активируется деятельность других органов и систем.
Стадии развития компенсаторно-приспособительных реакций.
1 стадия – стадия становления – проявляется в том, что в поврежденном органе в ответ на новые условия существования возникает интенсивное функционирование (гиперфункция) всех его структур. Однако при усилении функции органа возрастает и распад его структур. Для того чтобы восполнить этот распад и одновременно обеспечить достаточную функцию, должны быть мобилизованы все резервы органа, в первую очередь энергетические.
2 стадия – стадия закрепления или относительно устойчивой компенсации – характеризуется перестройкой всех структур поврежденного органа, что позволяет ему приспособиться к новым условиям существования и порой даже долгие годы полноценно функционировать.
3 стадия – стадия декомпенсации или истощения – развивается в том случае, если не ликвидирована причина, вызвавшая компенсаторно-приспособительную реакцию. При этом постепенно истощаются резервные возможности организма: образующейся в поврежденном органе энергии не хватает для одновременного обеспечения функции и восполнения распавшихся структур, нарастают нарушения обмена веществ, развивается дистрофия и, наконец, орган теряет способность полноценно функционировать. К компенсаторно-приспособительным процессам относятся: Гипертрофия — увеличение размеров органа или ткани благодаря увеличению размера каждой клетки. Гиперплазия — увеличение размеров органа или ткани в результате увеличения числа составляющих их клеток. Регенерация — восстановление (возмещение) структурных элементов ткани взамен погибших.Организация — замещение соединительной тканью нежизнеспособных тканей и инородных тел.Метаплазия — переход одного вида ткани в другой в пределах одного зародышевого листка.
Билет № 7
Фазы процесса дыхания. Кровяная гипоксия, жизненная емкость легких. Средостение. Связь легких с кругами кровообращения. .
Весь сложный биологический процесс дыхания можно разделить на три основных этапа:
I. Внешнее дыхание, обеспечивающее поступление из альвеолярного воздуха в кровь кислорода и выделение из крови углекислого газа.
II. Транспорт газов кровью.
III. Тканевое дыхание, в результате которого под влиянием цепи окислительных реакций при участии ферментов происходит превращение молекулярного кислорода в атомарный и использование его в окислительных процессах.
Жизненная емкость легких - это максимальное количество воздуха, которое может поступить и вывестись из легких во время максимального вдоха и выдоха. У взрослого здорового человека ЖЕЛ меняется в пределах от 3500 до 7000 мл и зависит от ряда факторов, а именно: от пола (как правило, ЖЕЛ у женщин ниже, чем у мужчин); от показателей физического развития, преимущественно от объема грудной клетки; от того, занимается или нет человек двигательными видами спорта (бег, лыжи, плавание и т. д.). Естественно, что если человек занимается этими видами спорта, то у него ЖЕЛ значительно больше, чем у тех, которые не увлекаются спортом. Кроме того, ЖЕЛ зависит от возраста. ЖЕЛ состоит из нескольких объемов :
