- •Содержание конспекта лекций
- •Введение
- •Тема №1: Основные законы теории твердого тела лекция №1: особенности строения твердых тел
- •1 Краткая историческая справка
- •2 Классификация твердых тел по проводимости
- •3 Понятие ковалентной связи
- •Лекция №2: Основы зонной теории твердого тела
- •1 Энергетические диаграммы уединенного атома и твердых тел
- •2 Обобщение некоторых выводов зонной теории для объяснения электропроводности и классификации твердых тел
- •3 Электроны в твердом теле
- •1 Структура полупроводников
- •2 Дефекты кристаллической решетки
- •3 Поверхность кристалла
- •Тема №2: Основы теории полупроводников Лекция №4: Электрофизические свойства полупроводников
- •1 Электроны и дырки в кристаллической решетке полупроводника
- •2 Собственные и примесные полупроводники
- •3 Носители заряда и их распределение в зонах проводимости
- •1 Рекомбинация носителей заряда
- •2 Законы движения носителей заряда в полупроводниках
- •Лекция №6: Эффект внешнего поля
- •1 Общие сведения об эффекте поля
- •2 Эффект поля в собственном полупроводнике
- •3 Эффект поля в примесном полупроводнике
- •1 Структура p-n-перехода
- •2 Равновесное состояние p-n-перехода
- •3 Неравновесное состояние p-n-перехода
- •4 Вольт-амперная характеристика p-n-перехода
- •1 Контакты полупроводник—металл
- •2 Граница полупроводник—диэлектрик
- •3 Гетеропереходы
- •1 Барьерная емкость электронно-дырочного перехода
- •1.1 Барьерная емкость как проявление токов смещения
- •1.2 Общее соотношение для барьерной емкости электронно-дырочного перехода
- •1.3 Частные соотношения для барьерной емкости различных электронно-дырочных переходов
- •1.4 Ширина области объемного заряда. Зарядная емкость перехода
- •2 Диффузионная емкость
- •1 Туннельный (зенеровский) пробой
- •2 Лавинный пробой
- •3 Тепловой пробой
- •3.1 Вах с учетом тепловыдепения в p-n-переходе
- •3.2 Расчет пробивного напряжения при тепловом пробое
- •3.3 Особенности теплового пробоя в реальных диодах
- •4 Поверхностный пробой
- •1 Поглощение света
- •2 Фоторезистивный эффект
- •3 Люминесценция полупроводников
- •1 Э.Д.С., возникающая в полупроводнике при его освещении
- •1.1 Воздействие света на p-n-переход
- •1.2 Основные характеристики и параметры
- •2 Спонтанное и индуцированное излучение
- •1 Эффекты Пельтье и Зеебека
- •2 Гальваномагнитный эффект Холла
- •1. Работа выхода
- •1.1 Электроны в металле
- •1.2 Выход электронов из металла
- •2 Виды электронной эмиссии
- •2.1 Термоэлектронная эмиссия
- •2.2 Электростатическая электронная эмиссия
- •2.3 Вторичная электронная эмиссия
- •2.4 Электронная эмиссия под ударами тяжелых частиц
- •1 Электрические явления в газе, понятие о плазме
- •2 Рис.5.12 Схема для снятия вольтамперной характеристики ионного прибора Вольтамперная характеристика газового разряда
2 Виды электронной эмиссии
Существуют следующие виды электронной эмиссии:
1. Термоэлектронная эмиссия, получаемая при повышении температуры тела.
2. Электростатическая электронная эмиссия (иначе; автоэлектронная или холодная), обусловленная действием сильного электрического поля.
3. Вторичная электронная эмиссия, возникающая под ударами электронов о поверхность тела.
4. Электронная эмиссия под ударами тяжелых частиц, возникающая, в частности, от ударов ионов.
5. Фотоэлектронная эмиссия, обусловленная действием лучистой энергии.
2.1 Термоэлектронная эмиссия
Термоэлектронная эмиссия имеет особенно широкое применение в электронных приборах.
С повышением температуры энергия электронов проводимости в проводнике или полупроводнике растет (см. рис.3.2) и может оказаться достаточной для совершения работы выхода.
Если вылетевшие электроны не отводятся от эмитирующей поверхности ускоряющим полем, то около нее образуется скопление электронов («электронное облачко»). В нем скорости электронов различны и некоторой средней скоростью обладает наибольшее количество электронов (рис.5.6). Средняя скорость обычно составляет десятые доли вольта (например, 0,46 в при эмиссии вольфрама, нагретого до 2700° К).
Рис.5.6. Распределени количества эмитированных электронов
по величинам их энергий
Электронное облачко находится в динамическом равновесии. Новые электроны вылетают из нагретого тела, а ранее вылетевшие падают обратно.
Явление термоэлектронной эмиссии напоминает испарение жидкости в закрытом сосуде. Над такой жидкостью находится насыщенный пар. В нем скорости молекул различны, и некоторой средней скоростью обладает наибольшее количество молекул. Насыщенный пар находится в динамическом равновесии: одни молекулы возвращаются в жидкость, а другие, получившие при нагреве достаточную энергию, вылетают из жидкости.
Удельной электронной эмиссией jэ называется ток эмиссии, получаемый с одного квадратного сантиметра поверхности, если все эмитированные электроны удаляются внешним полем.
В этом случае jэ представляет собой плотность эмиссионного тока.
Иначе говоря, удельная эмиссия характеризует число электронов, испускаемых каждую секунду с поверхности в 1 см2, и выражается в амперах на квадратный сантиметр (а/см2).
Если же внешнего поля нет, все электроны возвращаются обратно и плотность тока равна нулю. Возможны также случаи, когда возвращается часть электронов и плотность эмиссионного тока меньше удельной эмиссии. Ток эмиссии Iэ, создаваемый всей поверхностью катода Qк,
Iэ = jэ . Qк (5.2)
Зависимость jэ от Т для вольфрама наглядно изображается графиком на рис.5.7.
Рис.5.7. Зависимость удельной термоэлектронной эмиссии вольфрама от температуры
Как видно, при температурах ниже 2000° К эмиссии практически нет, а при нормальной рабочей температуре вольфрамового катода 2500 – 2600° К даже небольшое повышение температуры вызывает резкое возрастание эмиссии.
2.2 Электростатическая электронная эмиссия
Эту эмиссию иногда называют холодной или автоэлектронной, что неудачно, так как все виды эмиссии, кроме термоэлектронной, можно причислить к «холодным». А термин «автоэлектронная эмиссия» может навести на неправильную мысль, что электроны испускаются автоматически, самопроизвольно.
Выход электронов из металлов происходит с помощью сильных электрических полей с напряженностью не менее 105—106 в/см.
Внешнее поле понижает потенциальный барьер около поверхности металла. На рис.5.8 кривая 1 изображает распределение потенциала на границе металл-вакуум при отсутствии внешнего поля, а кривая 2 — изменение потенциала внешнего ускоряющего поля. Кривая результирующего потенциала 3 показывает, что высота потенциального барьера уменьшилась и работа выхода стала меньше. Если поле достаточно сильное, то барьер понижается настолько, что электроны выходят в вакуум при нормальной температуре.
Рис.5.8. Влияние внешнего ускоряющего поля на потенциальный
барьер у поверхности металла
Электростатическая эмиссия сильно возрастает в случае шероховатой поверхности, что объясняется концентрацией поля у микроскопических выступов этой поверхности.
При наличии активирующих покрытий электростатическая эмиссия также увеличивается, особенно у оксидных слоев. Помимо уменьшения работы выхода, свойственного оксидному слою, здесь играют роль проникновение внешнего поля в полупроводниковый оксидный слой и шероховатость поверхности оксида.
Явление увеличения термоэлектронной эмиссии под влиянием внешнего ускоряющего поля называют эффектом Шоттки.
В данном случае осуществляется своеобразная комбинация термоэлектронной эмиссии с электростатической. Но это вовсе не простое сложение двух видов эмиссии.
Эффект Шоттки наблюдается при сравнительно слабых полях. Если бы катод не был накален, то электростатическая эмиссия совсем отсутствовала бы. А при высокой температуре и наличии внешнего поля, понижающего потенциальный барьер, в вакуум выходят дополнительно многие электроны, которые при отсутствии поля не могли бы выйти.
Следовательно, эффект Шоттки можно рассматривать как электростатическую эмиссию, которая у нагретого эмиттера возникает даже под действием сравнительно слабого ускоряющего поля.
При усилении внешнего поля эффект Шоттки резко возрастает.
При кратковременном действии сильного поля из накаленных оксидных и других активированных катодов получается очень большая эмиссия. Такая эмиссия в виде кратковременных импульсов тока применяется в некоторых электронных и ионных приборах.
