- •Содержание конспекта лекций
- •Введение
- •Тема №1: Основные законы теории твердого тела лекция №1: особенности строения твердых тел
- •1 Краткая историческая справка
- •2 Классификация твердых тел по проводимости
- •3 Понятие ковалентной связи
- •Лекция №2: Основы зонной теории твердого тела
- •1 Энергетические диаграммы уединенного атома и твердых тел
- •2 Обобщение некоторых выводов зонной теории для объяснения электропроводности и классификации твердых тел
- •3 Электроны в твердом теле
- •1 Структура полупроводников
- •2 Дефекты кристаллической решетки
- •3 Поверхность кристалла
- •Тема №2: Основы теории полупроводников Лекция №4: Электрофизические свойства полупроводников
- •1 Электроны и дырки в кристаллической решетке полупроводника
- •2 Собственные и примесные полупроводники
- •3 Носители заряда и их распределение в зонах проводимости
- •1 Рекомбинация носителей заряда
- •2 Законы движения носителей заряда в полупроводниках
- •Лекция №6: Эффект внешнего поля
- •1 Общие сведения об эффекте поля
- •2 Эффект поля в собственном полупроводнике
- •3 Эффект поля в примесном полупроводнике
- •1 Структура p-n-перехода
- •2 Равновесное состояние p-n-перехода
- •3 Неравновесное состояние p-n-перехода
- •4 Вольт-амперная характеристика p-n-перехода
- •1 Контакты полупроводник—металл
- •2 Граница полупроводник—диэлектрик
- •3 Гетеропереходы
- •1 Барьерная емкость электронно-дырочного перехода
- •1.1 Барьерная емкость как проявление токов смещения
- •1.2 Общее соотношение для барьерной емкости электронно-дырочного перехода
- •1.3 Частные соотношения для барьерной емкости различных электронно-дырочных переходов
- •1.4 Ширина области объемного заряда. Зарядная емкость перехода
- •2 Диффузионная емкость
- •1 Туннельный (зенеровский) пробой
- •2 Лавинный пробой
- •3 Тепловой пробой
- •3.1 Вах с учетом тепловыдепения в p-n-переходе
- •3.2 Расчет пробивного напряжения при тепловом пробое
- •3.3 Особенности теплового пробоя в реальных диодах
- •4 Поверхностный пробой
- •1 Поглощение света
- •2 Фоторезистивный эффект
- •3 Люминесценция полупроводников
- •1 Э.Д.С., возникающая в полупроводнике при его освещении
- •1.1 Воздействие света на p-n-переход
- •1.2 Основные характеристики и параметры
- •2 Спонтанное и индуцированное излучение
- •1 Эффекты Пельтье и Зеебека
- •2 Гальваномагнитный эффект Холла
- •1. Работа выхода
- •1.1 Электроны в металле
- •1.2 Выход электронов из металла
- •2 Виды электронной эмиссии
- •2.1 Термоэлектронная эмиссия
- •2.2 Электростатическая электронная эмиссия
- •2.3 Вторичная электронная эмиссия
- •2.4 Электронная эмиссия под ударами тяжелых частиц
- •1 Электрические явления в газе, понятие о плазме
- •2 Рис.5.12 Схема для снятия вольтамперной характеристики ионного прибора Вольтамперная характеристика газового разряда
2 Эффект поля в собственном полупроводнике
Учитывая, что полупроводник собственный, то есть: n0 = p0 = ni и и = 0.
И заменив электростатический потенциал φЕ на –φ, плотность заряда приведется к виду
(2.41)
Подставим полученное значение λ в правую часть (2.38), поделим обе части на φТ и введем безразмерную переменную Ф = φ/φТ. После этого уравнение Пуассона примет вид:
где
Для кремния LDi = 14 мкм. l – глубина проникновения зарядов. Рассмотрим простейший случай, когда |φs| < φТ, т.e. |Φ|<1. В этом случае можно положить sh Ф ≈ Ф и (2.42) превращается в линейное дифференциальное уравнение 1-го порядка. Для граничных условий φ(∞) = 0 и φ(0) = φs , решение имеет вид:
Из (2.44) следует, что дебаевская длина — это расстояние, на котором потенциал уменьшается в е раз по сравнению с максимальным значением φ(x) на поверхности.
|
Рис.2.14. Эффект поля в собственном полупроводнике: зонная диаграмма, распределение потенциала, поля, заряда и концентраций носителей |
На рис. 2.14 для той же полярности напряжения, что и на рис. 2.13, показана зонная диаграмма, распределение потенциала, поля, заряда и концентраций носителей.
Искривление энергетических зон вблизи границы полупроводник-диэлектрик — характерная особенность эффекта поля.
Если изменить полярность напряжения, то знак объемного заряда изменится и зоны искривятся в другую сторону — «вниз». Однако при обеих полярностях приповерхностный слой в собственном полупроводнике оказывается обогащенным (либо электронами, либо дырками).
Величину поверхностного потенциала можно найти из условия непрерывности электрической индукции на границе полупроводник-диэлектрик:
(2.45)
где εп и εд — относительные диэлектрические проницаемости полупроводника и диэлектрика.
Поле в диэлектрике постоянное, поэтому (рис. 2.13)
(2.46)
поле в полупроводнике на границе с диэлектриком (рис. 2.14)определяется функцией φ(х):
(2.47)
Зависимость φs(U) показана в виде кривых на рис. 2.15
Из этих кривых видно, что поверхностный потенциал составляет тем большую долю приложенного напряжения, чем тоньше диэлектрик (чем меньше параметр a). При всех реальных значениях толщины диэлектрика и приложенного напряжения поверхностный потенциал не превышает нескольких десятых долей вольта. |
Рис. 2.15. Зависимость поверхностного потенциала в собственном полупроводнике от толщины диэлектрика и напряжения на металлическом электроде |
3 Эффект поля в примесном полупроводнике
Особенностью эффекта поля в примесных полупроводниках по сравнению с собственными является возможность получения как обогащенных, так и обедненных слоев.
Режим обогащения соответствует такой полярности приложенного напряжения, при которой основные носители притягиваются к поверхности.
Этот случай близок к рассмотренному на рис. 2.14, но отличается меньшим искривлением зон(рис. 2.16,а). Меньшее искривление зон обусловлено тем, что примесный полупроводник богат подвижными носителями и потому даже небольшой поверхностный потенциал обеспечивает необходимый заряд вблизи поверхности.
При условии φs < 2φT потенциал в примесном полупроводнике описывается выражением (2.44), но дебаевская длина имеет вид
(2.48)
где N — концентрация ионизированной примеси (донорной или акцепторной).
Рис. 2.16. Эффект поля в примесных полупроводниках:
в — режим обогащения, б — режим обеднения, в — образование инверсионного слоя
Поскольку N >> n, дебаевская длина в примесных полупроводниках гораздо меньше, чем в собственных. Кроме того, она практически не зависит от материала.
Полагая N = 1016 см–3,получаем из (2.48) типичное значение LD ≈ 0,04 мкм. Как видим, поле проникает в примесные полупроводники на ничтожную глубину.
Если применить формулу (2.48) к металлам (хотя это не совсем правомерно), то при свойственных им огромных концентрациях свободных носителей 1022–1023 см-3 дебаевская длина LD лежит в пределах десятых долей нанометра, что соответствует 1–2 межатомным расстояниям. Подобная оценка хорошо иллюстрирует тот известный факт, что заряды в металле всегда сосредоточены на поверхности, внутри металла заряды и электрические поля отсутствуют.
Режим обеднения соответствует такой полярности приложенного напряжения, при которой основные носители отталкиваются от поверхности. В этом случае поверхностный потенциал может иметь гораздо большие значения, чем в режиме обогащения (рис. 2.16,6). Отталкивание основных носителей, как уже отмечалось, приводит к появлению нескомпенсированного объемного заряда примесных ионов.
Предположим, что граница обедненного слоя резкая и расположена на расстоянии l0 от поверхности.
Плотность объемного заряда в обедненном слое примем постоянной и равной qN, где N — концентрация ионизированной примеси. Подставляя значение λ=qN в уравнение Пуассона (2.37) и используя граничные значения Е(l0) = 0 и φ(l0) = 0, получаем после двукратного интегрирования:
(2.49)
Положив в этом выражении х = 0 и φ(0) = φs найдем протяженность (толщину) обедненного слоя:
(2.50)
Хотя структура выражений (2.48) и (2.50) одинакова, между ними есть и существенная разница: дебаевская длина зависит только от свойств материала, тогда как толщина объемного заряда зависит еще и от приложенного напряжения, поскольку от него зависит потенциал φs (см. рис. 2.15). Обычно величина l0 в несколько раз превышает величину LD.
С ростом напряжения основные носители продолжают отталкиваться (а обедненный слой расширяться), но одновременно к поверхности притягиваются неосновные носители.
Когда нарастающий заряд неосновных носителей превысит заряд оставшихся основных, изменится тип проводимости приповерхностного слоя. Этот случай характеризуют термином инверсия типа проводимости, а слой, образованный неосновными носителями, называют инверсионным слоем (рис. 2.16, в).
С точки зрения зонной теории образование инверсионного слоя объясняется тем, что вблизи поверхности уровень электростатического потенциала пересекает уровень Ферми. Тем самым на приповерхностном участке уровень Ферми оказывается в той половине запрещенной зоны, которая соответствует преобладанию неосновных носителей. Толщина инверсионного слоя составляет всего 1–2 нм, т.е. 3–4 постоянных решетки.
Из рис. 2.16, в видно, что инверсионный слой образуется при значении поверхностного потенциала –(φF – φE0) Дальнейшее увеличение внешнего напряжения сопровождается дальнейшим увеличением потенциала φs до тех пор, пока уровень Ферми не пересечет границу разрешенной зоны (рис. 2.16,в —валентной). После этого граничный слой превращается в полуметалл, а потенциал φs практически не меняется и сохраняет значение
(2.51)
В обычных случаях максимальный поверхностный потенциал составляет 0,6-1,0 В.
Выводы по лекции
Таким образом, эффектом поля называют изменение концентрации носителей (а, значит, и проводимости) в приповерхностном слое полупроводника под действием электрического поля.
Слой с повышенной (по сравнению с объемом) концентрацией основных носителей называют обогащенным, а слой с пониженной их концентрацией — обедненным.
Особенностью эффекта поля в примесных полупроводниках по сравнению с собственными является возможность получения как обогащенных, так и обедненных слоев.
Режим обогащения соответствует такой полярности приложенного напряжения, при которой основные носители притягиваются к поверхности.
Режим обеднения соответствует такой полярности приложенного напряжения, при которой основные носители отталкиваются от поверхности.
Эффект внешнего поля лежит в основе принципа действия полевых транзисторов с изолированным затвором.
Теоретические вопросы для самоконтроля
1. Электроны и дырки в кристаллической решетке полупроводника 2. Собственные и примесные полупроводники 3. Носители заряда и их распределение в зонах проводимости 4. Рекомбинация носителей заряда 5. Законы движения носителей заряда в полупроводниках 6. Общие сведения об эффекте поля 7. Эффект поля в собственном полупроводнике 8. Эффект поля в примесном полупроводнике |
Тема №3: Свойства электронно-дырочных переходов
Лекция № 7: Электронно-дырочные переходы
Электрическим переходом называют переходной слой в полупроводнике между двумя областями с различными типами или величинами удельной электропроводности.
Виды электрических переходов:
электронно-электронный
электронно-дырочный
дырочно-дырочный
между примесным и чистым полупроводниками
полупроводником и металлом
диэлектриком и полупроводником и т.д.
Следует заметить, что электрический переход нельзя создать путем механического контакта двух кристаллов полупроводника, так как поверхности таких кристаллов загрязнены атомами других веществ, окислами полупроводника и т.п. Для изготовления переходов используются различные технологические методы, например, легирование части кристалла n-полупроводника акцепторными примесями путем их диффузии из газообразной или жидкой среды, содержащей атомы нужной примеси (диффузионный переход). Используют также метод вплавления в полупроводник металла или сплава, содержащего акцепторные или донорные примеси (сплавной переход), и др.
