- •Предмет и задачи химии. Место химии в системе естественных наук. Химические дисциплины в системе медицинского образования
- •Взаимосвязь между процессами обмена веществ и энергии в организме
- •Химическая термодинамика как теоретическая основа биоэнергетики. Предмет и методы химической термодинамики
- •Термодинамические системы: изолированные, закрытые, открытые, гомогенные, гетерогенные. Понятие о фазе.
- •5.Первое начало термодинамики. Внутренняя энергия. Изобарный и изохорный тепловые эффекты.
- •6.Энтальпия . Закон Гесса. Термохимические уравнения.
- •Стандартные теплоты образования и сгорания. Термохимические расчеты и их использование для энергетической характеристики биохимических процессов
- •Второе начало термодинамики. Энтропия.
- •2 Закон термодинамики
- •10. Термодинамические условия равновесия. Критерии направления самопроизвольно протекающих процессов. Энтальпийный и энтропийный факторы.
- •11.Обратимые и необратимые в термодинамическом смысле процессы. Процессы жизнедеятельности как пример необратимых процессов.
- •12.Обратимые и необратимые по направлению реакции. Понятие о химическом равновесии.
- •13. Константа химического равновесия и способы ее выражения: Кс, Кр, Ка
- •14.Закон действующих масс. Прогнозирование смещения химического равновесия на основе принципа Ле-Шателье.
- •15.Понятие о термодинамике открытых систем. Стационарное состояние организма и его подсистем.
- •16.Роль растворов в процессах жизнедеятельности организмов. Вода как растворитель. Значение явления растворения в процессах метаболизма.
- •17.Растворимость газов в жидкостях и ее зависисмость от природы газа и растворителя, от температуры. Закон Генри. Закон Сеченова. Закон Дальтона.
- •18.Растворимость газов в крови. Кесонная болезнь.
- •19.Растворимость н.М.С. В жидкостях. Факторы, влияющие на растворимость. Н.М.С. В жидкостях. Закон распределения Нернста.
- •20.Способы выражения состава раствора. Закон эквивалентов.
11.Обратимые и необратимые в термодинамическом смысле процессы. Процессы жизнедеятельности как пример необратимых процессов.
Обратимые и необратимые процессы, пути изменения состояния термодинамической системы.
Процесс называют обратимым, если он допускает возвращение рассматриваемой системы из конечного состояния в исходное через ту же последовательность промежуточных состояний, что и в прямом процессе, но проходимую в обратном порядке. При этом в исходное состояние возвращается не только система, но и среда. Обратимый процесс возможен, если и в системе, и в окружающей среде он протекает равновесно. При этом предполагается, что равновесие существует между отдельными частями рассматриваемой системы и на границе с окружающей средой. Обратимый процесс - идеализированный случай, достижимый лишь при бесконечно медленном изменении термодинамических параметров. Скорость установления равновесия должна быть больше, чем скорость рассматриваемого процесса.
Если невозможно найти способ вернуть и систему, и тела в окружающей среде в исходное состояние, процесс изменения состояния системы называют необратимым.
Необратимые процессы могут протекать самопроизвольно только в одном направлении; таковы диффузия,теплопроводность, вязкое течение и другое. Для химической реакции применяют понятия термодинамической и кинетической обратимости, которые совпадают только в непосредственной близости к состоянию равновесия На практике нередко встречаются системы, находящиеся в частичном равновесии, т.е. в равновесии по отношению к определенного рода процессам, тогда как в целом система неравновесна. Например, образец закаленной стали обладает пространственной неоднородностью и является системой, неравновесной по отношению к диффузионным процессам, однако в этом образце могут происходить равновесные циклы механической деформации, поскольку времена релаксации диффузии и деформации в твердых телах отличаются на десятки порядков. Следовательно, процессы с относительно большим временем релаксации являются кинетически заторможенными и могут не приниматься во внимание при термодинамич. анализе более быстрых процессов.
Общее заключение о необратимости процессов в природе. Переход тепла от горячего тела к холодному и механической энергии во внутреннюю - это примеры наиболее типичных необратимых процессов. Число подобных примеров можно увеличивать практически неограниченно. Все они говорят о том, что процессы в природе имеют определенную направленность, никак не отраженную в первом законетермодинамики. Все макроскопические процессы в природе протекают только в одном определенном направлении. В обратном направлении они самопроизвольно протекать не могут. Все процессы в природе необратимы, и самые трагические из них - старение и смерть организмов. Важность этого закона в том, что из него можно вывести заключение о необратимости не только процесса теплопередачи, но и других процессов в природе. Если бы тепло в каких-либо случаях могло самопроизвольно передаваться от холодных тел к горячим, то это позволило бы сделать обратимыми и другие процессы. Все процессы самопроизвольно протекают в одном определенном направлении. Они необратимы. Тепло всегда переходит от горячего тела к холодному, а механическая энергия макроскопических тел - во внутреннюю. Направление процессов в природе указывается вторым законом термодинамики.
