- •Раздел 9. Элементы теории вероятности
- •9.1 Дискретное и произвольное пространство элементарных событий
- •1. Дискретное вероятностное пространство. Классическое определение вероятности
- •2. Операции над событиями
- •3. Формула полной вероятности
- •4. Формула Байеса (формула гипотез)
- •5. Повторение испытаний. Формула Бернулли
- •7. Распределение Пуассона дискретной случайной величины
- •9.2 Случайные величины и их числовые характеристики
- •1. Непрерывная и дискретная случайная величина
- •2. Числовые характеристики дискретных случайных величин
- •3. Свойства математического ожидания
- •4. Дисперсия случайной величины
- •5. Вычисление дисперсии
- •6. Свойства дисперсии
- •7. Числовые характеристики непрерывных случайных величин
- •Свойства функции распределения
- •Свойства плотности распределения.
- •9.3 Распределения непрерывных случайных величин.
- •8. Равномерное распределение непрерывной случайной величины
- •9. Показательное распределение непрерывной случайной величины
- •10. Нормальный закон распределения непрерывной случайной величины
- •11. Функция Лапласа
- •9.4 Многомерные случайные величины. Распределение двумерных случайных величин.
- •1. Понятие многомерной случайной величины
- •2. Двумерные случайные величины и их функция распределения
- •3. Плотность распределения системы двух случайных величин
- •4. Условные законы распределения двумерной случайной величины
- •5. Условное математическое ожидание дискретной случайной величины
- •6. Зависимые и независимые случайные величины
- •7. Двумерный нормальный закон распределения случайной величины
- •8. Понятие двумерного нормального закона для мерной случайной величины
- •9.5 Предельные теоремы теории вероятности.
- •1. Закон больших чисел. Неравенство Чебышева
- •2. Теорема Чебышева
- •3. Теорема Бернулли
- •4. Предельные теоремы теории вероятностей
- •9.6 Случайные процессы. Цепи Маркова.
- •1. Понятие случайного процесса
- •2. Поток событий и его характеристики
- •3. Поток Пальма
- •4. Потоки Эрланга
3. Свойства математического ожидания
1) Математическое ожидание постоянной величины равно самой этой постоянной:
.
2) Постоянный множитель можно выносить за знак математического ожидания:
.
3) Математическое ожидание произведения двух независимых случайных величин равно произведению их математических ожиданий:
.
Это свойство справедливо для произвольного числа случайных величин.
4) Математическое ожидание суммы двух случайных величин равно сумме математических ожиданий слагаемых:
.
Это свойство также справедливо для произвольного числа случайных величин.
Пусть производится п независимых испытаний, вероятность появления события А в которых равна р.
Теорема.
Математическое ожидание
числа появления события А в п независимых
испытаниях равно произведению числа
испытаний на вероятность появления
события в каждом испытании:
.
4. Дисперсия случайной величины
Определение. Дисперсией (рассеиванием) дискретной случайной величины называется математическое ожидание квадрата отклонения случайной величины от ее математического ожидания:
.
Пример. Для рассмотренного выше примера находим.
Математическое ожидание случайной величины равно:
.
Возможные значения квадрата отклонения:
;
;
;
;
;
.
Дисперсия равна:
.
Однако, на практике подобный способ вычисления дисперсии неудобен, т.к. приводит при большом количестве значений случайной величины к громоздким вычислениям. Поэтому применяется другой способ.
5. Вычисление дисперсии
Теорема. Дисперсия равна разности между математическим ожиданием квадрата случайной величины Х и квадратом ее математического ожидания:
.
Доказательство.
С учетом того, что математическое
ожидание
и квадрат математического ожидания
– величины постоянные, можно записать:
.
Применим эту формулу для рассмотренного выше примера:
X |
0 |
1 |
2 |
3 |
4 |
5 |
X2 |
0 |
1 |
4 |
9 |
16 |
25 |
p |
0,0778 |
0,2592 |
0,3456 |
0,2304 |
0,0768 |
0,0102 |
;
6. Свойства дисперсии
Дисперсия постоянной величины равна нулю:
.
2) Постоянный множитель можно выносить за знак дисперсии, возводя его в квадрат:
.
3) Дисперсия суммы двух независимых случайных величин равна сумме дисперсий этих величин:
.
4) Дисперсия разности двух независимых случайных величин равна сумме дисперсий этих величин:
.
Справедливость этого равенства вытекает из свойства 2.
Теорема. Дисперсия числа появления события А в п независимых испытаний, в каждом из которых вероятность появления события постоянна, равна произведению числа испытаний на вероятности появления и вероятность непоявления события в каждом испытании:
.
Пример. Завод выпускает 96% изделий первого сорта и 4% изделий второго сорта. Наугад выбирают 1000 изделий. Пусть Х – число изделий первого сорта в данной выборке. Найти закон распределения, математическое ожидание и дисперсию случайной величины.
Выбор каждого из 1000 изделий можно считать независимым испытанием, в котором вероятность появления изделия первого сорта одинакова и равна р = 0,96.
Таким образом, закон распределения может считаться биноминальным.
Пример. Найти дисперсию дискретной
случайной величины Х – числа
появлений события А в двух независимых
испытаниях, если вероятности появления
этого события в каждом испытании равны
и известно, что
Т.к. случайная величина Х распределена по биноминальному закону, то
Пример. Производятся независимые испытания с одинаковой вероятностью появления события А в каждом испытании. Найти вероятность появления события А, если дисперсия числа появлений события в трех независимых испытаниях равна 0,63.
По формуле дисперсии биноминального закона получаем:
;
Пример. Испытывается устройство,
состоящее из четырех независимо
работающих приборов. Вероятности отказа
каждого из приборов равны соответственно
;
;
.
Найти математическое ожидание и дисперсию
числа отказавших приборов.
Принимая за случайную величину число отказавших приборов, видим что эта случайная величина может принимать значения 0, 1, 2, 3 или 4.
Для составления
закона распределения этой случайной
величины необходимо определить
соответствующие вероятности. Примем
.
1) Не отказал ни один прибор:
2) Отказал один из приборов:
0,302.
3) Отказали два прибора:
4) Отказали три прибора:
5) Отказали все приборы:
Получаем закон распределения:
-
0
1
2
3
4
0
1
4
9
16
0,084
0,302
0,38
0,198
0,036
Математическое ожидание:
Дисперсия:
Определение. Средним квадратическим отклонением случайной величины Х называется квадратный корень из дисперсии:
.
Теорема. Среднее квадратичное отклонение суммы конечного числа взаимно независимых случайных величин равно квадратному корню из суммы квадратов средних квадратических отклонений этих величин:
.
