- •1.Биология как наука. Связь биологии с другими науками. Место и задачи биологии в подготовке врача. Новая биология.
- •2.Человек как объект биологии. Значение биологического и социального наследования человека для медицины.
- •3.Развитие понятия жизни на современном этапе. Определения понятия «жизнь». Фундаментальные свойства живого.
- •4.Особенности хим.Строения живых организмов. Биологическое значение некоторых химических элементов( биоэлементы, иерархия клеточной организации).
- •5.Биологическая роль воды.
- •6. Эволюционно - обусловленные уровни организации жизни.
- •7.Типы клеточной организации. Строение про- и эукариотических клеток.
- •8.Гипотезы происхождения эукариотических клеток(симбиотическая,инвагиационная).
- •9.Современные доказательства симбиотического происхождения эукариот.
- •10.Клетка-клеточная теория.
- •11.Биологическая мембрана.,молекулярная организация и ее уровни..Транспорт вещест мембраны,модель.
- •12.Ядро.Строение и функции.
- •13. Цитоплазма. Органеллы общего значения и специальные, их строение и функции.
- •14.Митохандриальные болезни.Пероксисомные болезни.Лизосомнойе болезни.Примеры.
- •15.Характеристика Днк, ее функции и свойства.Репликация днк,Полук.Механизм реплекации Днк.
- •17.Хроматин.Классификация .Примеры.
- •18.Жизненный и митотический цикл клетки .Фазы митотического цикла ,их характеристика и значение.
- •19.Репарация днк.
- •20.Проблемы клеточной пролиферации в медицине.Определение пролиферативной активности клеток,тканей,органов.Значение метода тимидиновой радоавтографии в изучении жизненного цикла клетки.
- •21.Регуляция клеточной активности. Гибель клеток-как нормальный физиологический процесс.
- •22.Размножение.Формы и способы размножения.Половое размножение ,его эволюционное значение.
- •22.Гаметогенез.Мейоз.Особенности овогенеза и и сперматогинеза.
- •24.Морфофункциональная организация половых клеток.
- •1.Яйцеклетка
- •2.Сперматозоид
- •25.Оплодотворение,его фазы, биологическая сущность.
- •1.1. Оплодотворение.
- •26.Партеногенез.(гиногенез,андрогенез).Примеры.
- •27.Типы определения пола.
19.Репарация днк.
Процесс, позволяющий живым организмам восстанавливать повреждения, возникающие в ДНК, называют репарацией. Все репарационные механизмы основаны на том, что ДНК - двухцепочечная молекула, т.е. в клетке есть 2 копии генетической информации. Если нуклеотидная последовательность одной из двух цепей оказывается повреждённой (изменённой), информацию можно восстановить, так как вторая (комплементарная) цепь сохранена. роцесс репарации происходит в несколько этапов. На первом этапе выявляется нарушение комплементарности цепей ДНК. В ходе второго этапа некомплементарный нуклеотид или только основание устраняется, на третьем и четвёртом этапах идёт восстановление целостности цепи по принципу комплементарности. Однако в зависимости от типа повреждения количество этапов и ферментов, участвующих в его устранении, может быть разным.
Очень редко происходят повреждения, затрагивающие обе цепи ДНК, т.е. нарушения структуры нуклеотидов комплементарной пары. Такие повреждения в половых клетках не репарируются, так как для осуществления сложной репарации с участием гомологичной рекомбинации требуется наличие диплоидного набора хромосом.
А. Спонтанные повреждения
Нарушения комплементарности цепей ДНК могут происходить спонтанно, т.е. без участия каких-либо повреждающих факторов, например в результате ошибок репликации, дезаминирования нуклеотидов, депуринизации.
Ошибки репликации
Точность репликации ДНК очень велика, но примерно один раз на 105-106 нуклеотидных остатков происходят ошибки спаривания, и тогда вместо пары нуклеотидов А-Т, G-С в дочернюю цепь ДНК оказываются включёнными нук-леотиды, некомплементарные нуклеотидам матричной цепи. Однако ДНК-полимеразы δ, ε способны после присоединения очередного нук-леотида в растущую цепь ДНК делать шаг назад (в направлении от 3'- к 5'- концу) и вырезать последний нуклеотид, если он некомплементарен нуклеотиду в матричной цепи ДНК. Этот процесс исправления ошибок спаривания (или коррекция) иногда не срабатывает, и тогда в ДНК по окончании репликации остаются некомплементарные пары, тем более, что ДНК-полимераза а лишена корректирующего механизма и "ошибается" чаще, чем другие полимеразы.
При неправильном спаривании в первичной структуре дочерней цепи ДНК необычные основания не появляются, нарушена только ком-плементарность. Система репарации некомплементарных пар должна происходить только на дочерней цепи и производить замену некомплементарных оснований только в ней. Ферменты, участвующие в удалении неправильной пары нуклеотидов, распознают матричную цепь по наличию метилированных остатков аденина в последовательностях -GATC-. Пока основания нуклеотидных остатков в дочерней цепи неметилированы, ферменты должны успеть выявить ошибку репликации и устранить её.
Распознавание и удаление (первый этап) некомплементарного нуклеотида происходят при участии специальных белков mut S, mut L, mut H. Каждый из белков выполняет свою специфическую функцию. Mut S находит неправильную пару и связывается с этим фрагментом. Mut Н присоединяется к метилированному (по аденину) участку -GATC-, расположенному вблизи некомплементарной пары. Связующим между mut S и mut Н служит белок mut L, его присоединение завершает образование активного фермента. Формирование комплекса mut S, mut L, mut Н на участке, содержащем ошибку, способствует проявлению у белка mut Н эндонуклеазной активности. Ферментативный комплекс гидролизует фосфоэфирную связь в неметилированной цепи (рис. 4-21).
К свободным концам цепи присоединяется экзонуклеаза (второй этап). Отщепляя по одному нуклеотиду в направлении от 3'- к 5'- концу дочерней цепи, она устраняет участок, содержащий некомплементарную пару. Брешь застраивает ДНК-полимераза β (третий этап), соединение основного и вновь синтезированного участков цепи катализирует фермент ДНК-лигаза (четвёртый этап). Для успешного функционирования экзонуклеазы, ДНК-полимеразы р и ДНК-лигазы необходимо участие в репарации хеликазы и SSB-белков.
Б. Индуцируемые повреждения
Индуцируемые повреждения возникают в ДНК в результате воздействия разнообразных мутагенных факторов как радиационной, так и химической природы.
В. Дефекты репарационных систем и наследственные болезни
Репарация необходима для сохранения нативной структуры генетического материала на протяжении всей жизни организма. Снижение активности ферментов репарационных систем приводит к накоплению повреждений (мутаций) в ДНК.
Причиной многих наследственных болезней человека выступает нарушение отдельных этапов процесса репарации.
